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Abstract – In the early 2000s, computational 
thinking (CT) has emerged as an essential skill, and 
combining mathematics teaching with STEAM 
education is seen as an effective strategy to improve CT 
abilities. Over the past few decades, research on this 
educational strategy has increased significantly. This 
study evaluates the impact of STEAM-based 
mathematics teaching on CT skills among students and 
investigates major factors that contribute to their CT 
development. A meta-analytic review was conducted, 
encompassing 43 empirical studies listed in Scopus and 
published between 2017 and 2023. These studies 
included data from 7,807 students and produced 80 
effect size estimates for analysis. By applying Q 
Cochrane and Z tests using CMA v.4 software, the 
results demonstrated a significant, moderately positive 
impact on students' CT skills. Additionally, variables 
such as duration of intervention, ICT utilization, and 
the type of mathematical content were found to 
significantly influence CT outcomes, while factors like 
educational level and learning setting did not. The 
implications for mathematics education are explored in 
depth. 
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1. Introduction

The swift and advanced progression of science 
and technology in the 21st century requires 
individuals, particularly students, to adjust to new 
challenges across sectors such as education, business, 
healthcare, and industry. Addressing these challenges 
often involves programming abilities, a foundational 
aspect of computer science [1]. As programming 
becomes increasingly vital, educators are more 
frequently tasked with fostering computational 
thinking (CT), an essential subject in global 
educational technology discussions [2], [3], [4], [5], 
[6]. Molina-Ayuso et al. [7] describe CT as a 
multifaceted ability that enables students to tackle 
complex issues in areas such as engineering, 
mathematics, science, technology, and the arts. 
Therefore, prioritizing the cultivation of CT within 
educational contexts, especially in learning 
environments, is crucial. 

 Many studies describe CT as a structured 
approach to problem-solving that includes efficient 
and effective methods, such as algorithm design, 
pattern recognition, abstraction, and decomposition, 
all of which are foundational in computer science [8], 
[9], [10], [11], [12]. CT is particularly relevant to 
mathematics, often referred to as the “language of 
sciences,” where mathematical thinking activities 
inherently require CT skills. Studies indicate a 
positive relation between students' CT skills and their 
success in mathematics, suggesting that as students’ 
CT skills improve, so does their performance in 
mathematics, and the relationship works in both 
directions [13], [14], [15], [16]. Despite its 
importance, several studies reveal that students’ CT 
achievement remains suboptimal, with many 
exhibiting low CT proficiency [17], [18], [19], [20], 
[21].  
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Consequently, effective interventions in math 
learning environments are needed to improve CT 
skills. Enhancing students' mathematics 
achievement through improved computational 
thinking (CT) skills can be achieved by creating 
structured learning environments. Methods such as 
problem-based learning, discovery learning, and 
project-based learning are particularly effective in 
building advanced problem-solving skills [22], [23], 
[24]. Since complex problem-solving is fundamental 
to CT [7], these teaching strategies are highly 
suitable for nurturing CT skills in mathematics. 
Additionally, incorporating science, technology, 
engineering, art, and mathematics (STEAM) into 
math education can further support CT skill 
development. Research demonstrates that STEAM 
education significantly benefits students' CT 
acquisition [17], [25], [26], [27], [28], providing a 
solid foundation for the idea that STEAM-based 
math instruction can strengthen CT within math 
classrooms. 

From 2004 to 2023, numerous empirical studies 
indicated that math instruction integrated with 
STEAM education positively impacts students’ CT 
acquisition [29], [30], [31], [32], [33]. However, 
other studies report insufficient evidence to conclude 
a significant effect on CT achievement [46], [47], 
[48], [49], [50], and some even indicate negative 
impacts [54], [55], [56]. This variation suggests that 
the impact of STEAM-based math instruction on CT 
skills is inconsistent. 

Over the last two decades, quantitative studies 
have yielded mixed results: Some report moderate 
effects of STEAM-integrated math instruction on CT 
achievement [33], [34], [35], [36], [37], while others 
report strong effects [39], [42], [43]. In contrast, a 
number of studies indicate modest effects [46], 49], 
[52], and others show weak effects [57], [58]. This 
range of findings reflects the diverse outcomes of 
STEAM-integrated math instruction on students’ CT 
skills, suggesting a need to examine factors that may 
account for these differences, such as intervention 
duration, class size, educational level, learning 
environment, ICT use, and content focus. 

Meta-analysis - A quantitative method that 
synthesizes findings across relevant empirical studies 
by using effect sizes as data [59], [61] can provide a 
clearer picture of the varying effects of STEAM-
integrated math instruction on CT achievement. This 
approach also facilitates analysis of critical factors 
that may contribute to differences in students’ CT 
outcomes.  

Although some systematic reviews have provided 
overviews of CT studies within mathematics 
education [62], [63], [64], [65], [66], [67], and 
various meta-analyses have explored CT 
interventions more broadly [60], [68], [69], [70], 

[71], [72], this study employs meta-analysis 
specifically to address the inconsistent effects of 
STEAM-enhanced math instruction on CT abilities 
and to identify factors that may affect students’ CT 
achievement in these settings.   
   This study examines and synthesizes 
the results of previous research on computational 
thinking (CT) within the context of STEAM-based 
mathematics instruction. The primary objectives are 
to evaluate the impact of this instructional method on 
students' CT development and to explore the factors 
that may contribute to differences in student 
outcomes. Particularly, the meta-analytic review 
seeks to answer the following questions: 
1. What is the effect size of STEAM-integrated 

mathematics instruction on students' CT 
development? 

2. Does this teaching method produce a significant 
positive impact on students' CT abilities? 

3. How do variables such as class size, duration of 
the treatment, participant demographics, 
educational level, learning environment, use of 
ICT, and mathematical content influence CT 
outcomes in STEAM-integrated mathematics 
instruction? 

 
2. Theoretical Framework 
 

 In this section, some theoretical frameworks are 
explained, including computational thinking, 
mathematics instruction, STEAM education, and 
substantial factors. Each of theoretical framework is 
discussed in detail in the following subsection. 
 
2.1. Computational Thinking 

 
CT is defined as a complex problem-solving 

method, primarily for students in educational settings 
around the world. The concept of "computational 
thinking" was first presented by Papert in 1980 as a 
foundational skill in computer science [42], [50]. 
Later, Wing broadened CT’s popularity in 2006, 
defining it as a cognitive process for approaching 
problems, especially in the context of computer 
science [1], [26], [74], [75], [77], [78], [79], [80]. 
Combining insights from multiple sources, CT is 
understood as a methodical approach to problem-
solving that involves structured steps such as 
abstraction, pattern recognition, decomposition, and 
algorithm - fundamental concepts in computer 
science [9], [10], [11], [12]. Wing [12] outlines these 
stages as follows: (1) Decomposition – dividing 
complex problems into smaller, more manageable 
components; (2) Pattern Recognition – detecting 
recurring patterns; (3) Abstraction – concentrating on 
key, relevant details; and (4) Algorithm – executing a 
series of organized steps or instructions. 
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Further, Fry et al. [5] identify five components of 
CT within the Australian Mathematics Curriculum: 
(1) Decomposition – breaking down problems; (2) 
Abstraction – isolating important data; (3) Pattern 
Recognition – analyzing and identifying data 
patterns; (4) Algorithm – creating sequential steps to 
solve a problem; and (5) Generalization – applying 
solutions to similar problems. Brennan and Resnick 
[8] also describe CT as having three dimensions: 
Computational practices, perspectives, and concepts. 
In a similar vein, Grover and Pea [9] highlight key 
CT concepts such as logical and algorithmic 
reasoning, pattern recognition, abstraction, 
evaluation, and automation. Several indicators of CT, 
including debugging, critical and algorithmic 
thinking, problem-solving, data analysis, and 
generalization are also identified by the International 
Society for Technology in Education (ISTE) [20], 
[34], [36], [37], [40]. The National Research Council 
(NRC) offers similar indicators, such as 
representation, data analysis, algorithm creation, 
collaboration, and evaluation [28]. These frameworks 
and indicators have been adopted in 57 documents 
included in this meta-analytic review to assess CT 
achievements. 

 
2.2. Mathematics Instruction and STEAM Education 

 
Incorporating STEAM into mathematics 

education is designed to improve students' 
computational thinking (CT) abilities. Different 
mathematics learning environments integrate 
information and communication technology (ICT) 
within the STEAM framework, focusing on a 
constructive approach to learning. Constructive 
learning is an educational perspective that 
encourages students to actively build knowledge 
through creative and reflective processes [83], [84], 
[85], [86], [87]. This approach assumes that students 
actively create understanding by engaging in 
problem-solving and decision-making [6], [88]. 

STEAM-based learning in mathematics often 
follows a structured process: Asking questions to 
identify a problem, imagining possible solutions, 
planning a product through detailed sketches, and 
creating and testing the solution [89], [90], [91]. 
Several technologies, including robotics, Scratch, 
virtual reality, Arduino, math labs, and educational 
games, support this approach to enhance CT skills. 
These tools are frequently employed in the 57 
documents reviewed in this paper to boost CT 
achievements in mathematics within a STEAM 
framework. 

 
 
 
 

2.3. Substantial Factors 
 
Substantial factors refer to moderating variables 

that can influence the dependent variable 
independently of the main independent variable. In 
this study, in addition to examining the impact of 
STEAM-integrated mathematics instruction on 
students' CT, several moderating variables are 
analyzed for their potential effect on CT 
achievement. Lipsey and Wilson [92] argue that 
substantial factors closely relate to both independent 
and dependent variables. In this context, variables 
such as treatment duration, participant, class size, 
educational level, learning environment, ICT use, 
and mathematics content may contribute to 
differences in students' CT outcomes. 

Specifically, factors like mathematics content, 
participant demographics, and educational level 
relate to CT, while variables like intervention 
duration, learning environment, ICT, and class size 
relate to STEAM-integrated mathematics instruction. 
Helsa et al. [60] found that class size, educational 
level, participant characteristics, and ICT use can 
impact CT outcomes in interventions, while Ye et al. 
[74] identified intervention duration, learning 
environment, and subject content as factors 
influencing students' CT skill variations. Thus, these 
factors are examined here for their potential role in 
explaining differences in students' CT achievement 
within STEAM-integrated mathematics instruction. 
 
3. Method 
 

 In this section, some information is explained 
comprehensively, including research design, 
inclusion criteria, literature search, document 
selection, data extraction, and data analysis. Each of 
information is discussed in detail in the following 
subsection. 
 
3.1. Research Design 

 
This study employed a systematic review to 

analyze recent research. A comprehensive review 
was conducted on a wide range of empirical and 
secondary sources concerning CT and the integration 
of STEAM education into mathematics instruction. 
Additionally, meta-analysis—a set of quantitative 
methods utilizing effect sizes [93], [94], [95], [96], 
was applied to evaluate the effect of STEAM-
integrated math instruction on students’ CT 
acquisition. The study also investigated variables 
such as participant, educational level, treatment 
duration, class size, learning environment, ICT 
usage, and mathematical content, all of which could 
potentially affect CT outcomes.  
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As outlined by Jesson et al. [97], a systematic 
review follows several steps: (1) defining the 
research question, (2) setting inclusion and exclusion 
criteria, (3) performing an extensive document 
search, (4) selecting pertinent documents, (5) 
extracting the data, (6) analyzing the data, and (7) 
interpreting the findings and preparing the report. 
Each stage of this systematic review is explained in 
detail in the following sections. 

 
3.2. Inclusion Criteria 

 
To narrow the scope of the study, specific 

inclusion criteria were defined. First, each document 
title needed to include the keywords “computational 
thinking” AND “mathematics.” Second, the 
documents had to be conference papers or journal 
articles written in English, from reputable journals or 
conference proceedings. Third, the documents had to 
be published between 2004 and 2023 and span 
relevant disciplines, including social sciences, 
computer science, mathematics, arts and humanities, 
or interdisciplinary fields. Fourth, the sample 
population covered students from various global 
regions—Asia, America, Europe, Africa, and 
Australia—and educational levels from preschool 
through university. Fifth, the intervention had to 
involve STEAM-integrated math instruction, such as 
math, programming, or robotics education.  

Sixth, traditional math instruction served as a 
comparator. Seventh, the outcome assessed was 
computational thinking, while the eighth criterion 
specified a quasi-experimental design. Ninth, 
documents needed to report sufficient statistical data 
to calculate effect sizes. Any documents failing to 
meet these criteria were excluded in the selection 
phase. 

 
3.3. Literature Search 

 
The Scopus database was used to locate studies 

related to CT and STEAM-based mathematics 
instruction. Scopus is recognized as a credible, 
extensive repository of scientific literature [98], [99]. 
A search using the keywords “computational 
thinking” and “mathematics” was performed on 
November 15, 2023, at 11:59 PM, identifying 948 
documents published between 1970 and 2023. These 
included articles, conference papers, book chapters, 
reviews, and editorials in various languages. 
Documents were then filtered according to the 
inclusion criteria.  
 

3.4. Document Selection 
 
A four-step procedure was employed to 

systematically select documents [100], [101]. The 
process for selecting documents is illustrated in 
Figure 1.  
 

 

Figure 1. The systematic process of document selection 
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3.5. Data Extraction 
 

From the initial pool, 43 documents meeting the 
eligibility criteria were selected and entered into a 
coding sheet. The sheet included information such as 
author, research approach, design, participants, 
instruments, quantitative results, relevant factors, 
document type, source type, publication details, and 
access information (DOI or URL). Key details 
included authorship, methodology, sample size, CT 
assessment components, learning environment, ICT 
use, and mathematical content.  

These documents provided statistical data and 
information on factors like class size, intervention 
duration, educational level, participants, learning 
environment, ICT, and mathematical content, 
ultimately contributing 80 effect size units and 
involving 7,807 participants across educational level.  

To ensure data quality, two meta-analysis experts 
and two qualitative meta-synthesis experts verified 
and validated the data. Following the re-coding and 
review of the coding sheet, coding consistency 
between coders was evaluated using Cohen's Kappa 
test, [102]. As seen in Table 1, the Kappa values 
indicate that coding agreement was between 
moderate and almost perfect, with all items showing 
significant values below 0.05, demonstrating strong 
data reliability and validity [103], [105], [106].  

 
 
 
 
 
 
 

 
Table 1. The results of Cohen’s Kappa test 

 

Coding Item Kappa 
Value 

Agreement Level Sig. 
Value 

Mean of Experiment Group 0.923 Almost Perfect 0.009 
Dev. Std. of Experiment Group 0.912 Almost Perfect 0.009 
Sample Size of Experiment Group 0.927 Almost Perfect 0.009 
Mean of Control Group 0.957 Almost Perfect 0.008 
Dev. Std. of Control Group 0.943 Almost Perfect 0.008 
Sample Size of Control Group 0.952 Almost Perfect 0.008 
T-value  0.962 Almost Perfect 0.007 
P-value 0.969 Almost Perfect 0.007 
Class Capacity 0.899 Strong 0.011 
Intervention Duration 0.822 Strong 0.018 
Educational Level 0.845 Strong 0.017 
Participant 0.831 Strong 0.017 
Learning Environment 0.889 Strong 0.011 
ICT 0.872 Strong 0.011 
Mathematical Content 0.867 Strong 0.012 

 
 
 
 
 
 
 
 
 

3.6. Data Analysis 
 

A random-effects model was applied in this meta-
analytic review, which involved calculating the 
estimated effect size, conducting a publication bias 
analysis, performing sensitivity analysis, and 
applying the Z test and Q Cochrane test. This model 
was chosen for its suitability in handling diverse 
study characteristics, including differences in 
participants, educational levels, instruments, 
intervention duration, learning environment, class 
size, and ICT interventions  [105]. Hedges’ equation 
was used to compute effect sizes, suitable for smaller 
sample sizes [93]. As outlined by Pigott [95], the 
formula for Hedges’ equation is: 

 

g =  
𝑥𝑥1��� − 𝑥𝑥2���

�(𝑛𝑛1 − 1)𝑆𝑆12 + (𝑛𝑛2 − 1)𝑆𝑆22
𝑛𝑛1 + 𝑛𝑛2 − 2

× �1 −
3

4𝑑𝑑𝑑𝑑 − 1
� 

The effect size was categorized based on the g 
value as follows: 0.00–0.20 (Weak), 0.21–0.50 
(Modest), 0.51–1.00 (Moderate), and >1.00 (Strong). 
The Z test was used to assess the significance of 
STEAM-based mathematics instruction on CT 
development, while the Q Cochrane test evaluated 
the influence of seven key factors on CT variability. 
Using funnel plots and the trim-and-fill test, 
publication bias was evaluated [59], [60], [100]. To 
verify the stability of the data and identify any 
outliers that could affect the results, sensitivity 
analysis was performed [104].  

The "one study removed" feature in CMA 
software was utilized to perform this sensitivity 
analysis, ensuring the reliability of the dataset [105]. 



TEM Journal. Volume 14, Issue 1, pages 949-963, ISSN 2217-8309, DOI: 10.18421/TEM141-84, February 2025. 
 

954                                                                                                                           TEM Journal – Volume 14 / Number 1 / 2025. 

4. Results 
 
This meta-analysis covered key areas including 

sensitivity analysis, publication bias, estimated effect 
size, and subgroup analysis. Each of these elements 
is explored in detail in the following subsections. 

 

4.1. Sensitivity Analysis and Publication Bias 
 
To evaluate potential publication bias, the 

distribution of effect sizes was analyzed using a 
funnel plot.  

 

 
 

Figure 2. The distribution of effect size data in the funnel plot 
 

According to Figure 2, the effect size data seems 
to be symmetrically distributed in the funnel plot. To 
verify this symmetry, a trim-and-fill test was 
performed.  
 
Table 2. The results of fill and trim test 
 

 Studies 
Trimmed 

Effect 
Size 
in g 

Lower 
Limit 

Upper 
Limit Q-value 

Observed 
Values 

 0.550 0.427 0.674 579.634 

Adjusted 
Values 

0 0.550 0.427 0.674 579.634 

 
As demonstrated in Table 2, no data needed to be 

removed from either side, reinforcing the symmetry 
of the plot and suggesting that there is no publication 
bias in the data.      
 To further evaluate sensitivity, a sensitivity 
analysis was conducted by inspecting outliers within 
the range of the lowest and highest effect sizes.  

 

Using the "one study removed" feature in the 
CMA software, the analysis revealed a lowest effect 
size of 0.527 and a highest of 0.564, with an 
estimated mean of 0.551 across the 80 effect size 
data points. Since this estimated mean fall within the 
interval of 0.527 to 0.564, no outliers were identified. 
This suggests the data does not exhibit sensitivity due 
to variations in data quantity. According to Bernard 
et al. [105], if the estimated mean lies within the 
interval of the lowest and highest effect sizes, 
changes in data quantity do not indicate sensitivity.  
 
4.2. Summarization and Estimation of Effect Size 

 
This meta-analysis included 43 documents, 

generating 80 effect size units involving 12,746 
students. These effect sizes varied in direction, 
significance, and strength (Table 3).  
 

 

Table 3. The results of calculations of effect size 
 

Document Effect Size in g Unit P-value 
[35], b 0.568 [0.354; 0.782] 0.000 
[4]  -0.227 [-0.663; 0.209] 0.308 
[2]  0.391 [0.002; 0.780] 0.049 
[7] 0.049 [-0.271; 0.369] 0.765 
[58] 0.103 [-0.285; 0.491] 0.603 
[48]  0.128 [-0.094; 0.350] 0.258 
[19], a 0.293 [-0.202; 0.788] 0.246 
[19], b 0.144 [-0.349; 0.637] 0.567 
[22] 0.013 [-0.386; 0.412] 0.949 
[24] -0.034 [-0.597; 0.528] 0.905 
[25], a 0.222 [-0.279; 0.724] 0.384 
[25], b 1.419 [0.859; 1.979] 0.000 
[25], c 1.240 [0.694; 1.787] 0.000 
[51] 0.673 [-0.034; 1.380] 0.062 
[56], a 0.576 [0.055; 1.097] 0.030 
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[56], b 0.384 [-0.134; 0.902] 0.146 
[56], c 0.949 [0.410; 1.488] 0.001 
[56], d -0.164 [-0.678; 0.350] 0.532 
[56], e -0.008 [-0.518; 0.503] 0.977 
[56], f 0.045 [-0.468; 0.558] 0.865 
[54], a 1.010 [0.142; 1.878] 0.023 
[54], b 1.783 [0.795; 2.771] 0.000 
[54], c -0.718 [-1.375; -0.061] 0.032 
[54], d 0.989 [0.123; 1.855] 0.025 
[54], e 1.568 [0.612; 2.524] 0.001 
[54], f -0.614 [-1,266; 0.037] 0.065 
[45] 0.926 [0.509; 1.343] 0.000 
[36]  0.687 [0.107; 1.267] 0.020 
[3] 0.245 [-0.402; 0.893] 0.458 
[53] 0.187 [-0.016; 0.391] 0.071 
[31], a 0.499 [0.127; 0.871] 0.009 
[31], b 1.677 [1.259; 2.095] 0.000 
[34]  0.845 [0.449; 1.241] 0.000 
[120], a 0.992 [0.368; 1.617] 0.002 
[120], b 0.633 [-0.083; 1.349] 0.083 
[52]  0.464 [-0.319; 1.248] 0.246 
[43], b 1.340 [0.589; 2.091] 0.000 
[33] 0.784 [0.217; 1.351] 0.007 
[41] 0.626 [0.186; 1.067] 0.005 
[49] 0.263 [-0.238; 0.765] 0.303 
[51] 0.672 [-0.035; 1.379] 0.062 
[35], a  1.713 [1.536; 1.891] 0.000 
[39] 1.658 [1.379; 1.937] 0.000 
[40] 0.777 [0.373; 1.180] 0.000 
[37] 0.932 [0.554; 1.309] 0.000 
[27] 0.925 [0.139; 1.711] 0.021 
[50], a 0.293 [0.033; 0.553] 0.027 
[50], b 0.737 [0.469; 1.004] 0.000 
[50], c 0.886 [0.614; 1.157] 0.000 
[50], d 0.650 [0.384; 0.915] 0.000 
[50], e 0.131 [-0.128; 0.390] 0.321 
[106], a  0.023 [-0.857; 0.903] 0.959 
[106], b 0.198 [-0.731; 1.127] 0.676 
[106], c 0.352 [-0.458; 1.163] 0.394 
[42], a 0.246 [-0.111; 0.603] 0.177 
[42], b 1.428 [1.030; 1.827] 0.000 
[42], c 1.249 [0.860; 1.638] 0.000 
[47], a 0.576 [0.074; 1.078] 0.025 
[47], b 0.733 [0.225; 1.242] 0.005 
[47], c 0.387 [-0.109; 0.884] 0.126 
[46]  0.320 [-0.291; 0.932] 0.305 
[32], a  0.456 [0.170; 0.741] 0.002 
[32], b 0.307 [0.076; 0.539] 0.009 
[38], a 0.573 [0.319; 0.827] 0.000 
[38], b 0.184 [0.039; 0.330] 0.013 
[43], a 0.730 [0.155; 1.305] 0.013 
[29] 0.928 [0.374; 1.482] 0.001 
[30] 0.379 [0.077; 0.681] 0.014 
[14]  1.909 [1.062; 2.757] 0.000 
[16], a  0.505 [0.122; 0.889] 0.010 
[16], b 0.505 [0.122; 0.889] 0.010 
[16], c 0.455 [0.073; 0.838] 0.010 
[16], d -0.110 [-0.488; 0.268] 0.569 
[16], e -0.341 [-0.721; 0.040] 0.079 
[16], f -0.260 [-0.639; 0.119] 0.179 
[28], a 0.952 [0.100; 1.804] 0.028 
[28], b 0.946 [0.094; 1.797] 0.029 
[28], c 0.911 [0.064; 1.759] 0.035 
[28], d -0.453 [-1.268; 0.362] 0.276 
[44] 0.998 [0.407; 1.589] 0.001 
Estimated Effect Size 0.551 [0.427; 0.674] 0.000 
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The effect sizes presented in Table 3 indicate that 
of the 43 eligible documents, seven produced two 
effect size units each (e.g., [19], [31], [32], [35], 
[38]).  

 

Additionally, four documents generated three 
effect size units [25], [42], [47], [106], one document 
produced four [30], one produced five [50], and three 
produced six effect size units [16], [54], [56]. 
 

 

Figure 3. The frequency distribution of effect size data in the perspective of strength, direction, and significance 
 

Effect sizes were then categorized by direction, 
significance, and strength, as shown in Figure 3. 

According to Figure 3, the effect sizes, based on 
significance, consisted of 40% non-significant and 
60% significant values. In terms of direction, 12.5% 
were negative, while 87.5% were positive. When 
viewed by strength, 18.75% were weak, 26.25% 
modest, 40% moderate, and 15% strong. This 
suggests that the effect size data is predominantly 
significant, positive, and moderate. Table 3 further 
shows that the average effect size of the 80 data units 
was 0.551, indicating a moderately positive effect of 
STEAM-integrated mathematics instruction on 
students' computational thinking (CT).  

With a Z-test significance value below 0.05, this 
result confirms that the STEAM-integrated approach 
significantly enhances students' CT, making it an 
effective educational intervention. 

 
4.3. Subgroup Analysis 

 
To examine how factors such as class size, 

educational level, intervention duration, participants, 
learning environment, ICT use, and mathematical 
content influence students' CT in STEAM-integrated 
mathematics instruction, a Q Cochrane test was 
performed (Table 4). 

 
 
 
 
 

Table 4. The results of Q Cochrane test 
 

Substantial 
Factor Groups 

Effect 
Size in 
g Unit 

P-
value 

Educational 
Level 

Pre-School 0.653 

0.059 
Elementary School 0.426 
Junior High School 0.848 
Senior High School 0.788 

 College/University 0.427 
Intervention 
Duration 

2 Weeks 0.634 

0.045 

3 Weeks 0.718 
4 Weeks 0.535 
5 Weeks 0.575 
6 Weeks 0.737 
7 Weeks 0.786 
8 Weeks 0.663 
9 Weeks 0.218 
10 Weeks 0.538 
12 Weeks 0.308 
15 Weeks 0.320 
16 Weeks 1.340 
24 Weeks 0.926 
48 Weeks 0.125 

Learning 
Environment 

Mathematics Education 0.483 

0.188 
Programming Education 0.400 
Robotics Education 0.769 
STEAM Education 0.935 
STEM Education 0.666 

ICT Arduino 0.581 

0.020 

 Digital Application 0.396 
 Game Application -0.054 
 Math Laboratory 0.391 
 No ICT 0.515 
 Robotics 0.700 
 Scratch 0.415 
 Virtual Reality 1.346 
Mathematical 
Content 

Algebra 0.587 

0.000 
Combinational Content 0.596 
Geometry 0.499 
Number & Operation 0.588 
Probability & Statistics -0.236 
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As seen in Table 4, factors such as intervention 
duration, participants, ICT use, and mathematical 
content significantly influence students' CT, as 
indicated by p-values below 0.05. Conversely, class 
size, intervention duration, and learning environment 
showed p-values above 0.05, suggesting insufficient 
evidence to conclude that these factors significantly 
impact CT outcomes.  
 
5. Discussion 
 

 This part discusses the effectiveness of 
mathematics instruction integrated to STEAM 
education on the achievement of students’ CT skills, 
the difference of students’ CT skills in mathematics 
instruction integrated to STEAM education, 
implications to mathematics education, and 
limitations and suggestions. Each part is explained in 
the following subpart. 

 
5.1. The Effectiveness of Mathematics Instruction 

Integrated to STEAM Education on the 
Achievement of Students’ CT 

 
This study demonstrates that mathematics 

instruction combined with STEAM education has a 
moderately positive effect on enhancing students' CT 
skills, with an estimated effect size of 0.551 based on 
80 data points. Supporting studies similarly show that 
programming education contributes moderately to 
CT skill development in students [72], [73], [81]. 
Other studies indicate that game-based learning and 
CT interventions also moderately enhance students' 
CT [70], [71], [74], [82]. Additionally, Cheng et al. 
[69] found that STEM education positively affects 
students' CT skills, and Hwang and Hwang [76] 
reported similar effects from software education. 
These findings collectively suggest that CT 
interventions, like STEAM-integrated mathematics 
instruction, positively impact CT skills. 

The results also indicate that STEAM-integrated 
mathematics instruction significantly enhances 
students' CT skills, affirming its effectiveness in 
supporting CT development. Numerous related 
studies highlight that intervention like programming 
education, game-based learning, and STEM 
education, alongside tools such as Scratch and other 
computer-based activities, positively affect students' 
CT outcomes [81], [82], [107], [108]. These 
consistent results suggest that STEAM-integrated 
mathematics instruction is effective in promoting CT 
skill acquisition over recent decades. 

CT is closely connected to mathematics, the 
fundamental language of science, as solving 
mathematical problems often requires CT.  

 
 

Previous research has identified a positive 
relationship between students' CT abilities and their 
performance in mathematics [13], [14], [15], [16], 
[39].  

Therefore, promoting CT skills is crucial in 
mathematics education, particularly through 
approaches. These approaches cultivate complex 
problem-solving abilities, aligning with CT's focus 
on tackling intricate challenges [7]. Incorporating 
STEAM into mathematics instruction may further 
enhance CT, as shown by this study and related 
research indicating STEAM’s significant positive 
impact on CT. 

Many instructional models in mathematics, 
including cooperative, problem-based, and inquiry-
based learning, offer constructivist benefits, focusing 
on students actively constructing knowledge through 
reflection and creativity [35], [83], [84], [85]. 
Integrating these models with STEAM’s problem-
solving approach fosters a deeper understanding and 
decision-making skills [86], [87], [88]. Technology 
tools like robotics, Scratch, virtual reality, Arduino, 
and math labs further boost CT skills in mathematics 
under a STEAM framework [71], [73]. Thus, 
integrating STEAM into math education is logically 
sound for optimizing CT skill development. 
 
5.2. The Difference of Students’ CT Achievement in 

Mathematics Instruction Integrated to STEAM 
Education 

 
This study identifies certain factors—such as 

intervention duration, participant demographics, ICT, 
and specific mathematical content, that significantly 
influence CT skill outcomes in STEAM-integrated 
mathematics instruction. However, variables like 
class size and learning environment showed no 
significant impact. Each of these factors is discussed 
further below. 

 
5.2.1. Educational Level 
  

Educational level did not have a significant effect 
on CT skills in STEAM-integrated mathematics 
instruction. Supporting studies confirm that 
educational level generally does not affect CT 
outcomes in interventions such as unplugged 
activities, programming, or STEM and software 
education [73], [74], [76], [81], [109]. This approach 
positively impacts CT skills across levels, with 
moderate effects noted in pre-school (g = 0.653), 
junior high (g = 0.848), and senior high (g = 0.788) 
students, while elementary (g = 0.426) and college (g 
= 0.427) students saw modest improvements. The 
highest impact appeared in junior high, suggesting 
that STEAM-integrated instruction may be 
particularly effective for this group. 
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5.2.2. Intervention Duration 
 

Intervention durations, ranging from 2 to 48 
weeks, significantly affected CT skill acquisition. 
Prior studies on programming, STEM, and software 
education also confirm that intervention duration 
influences CT development [69], [70], [72], [73], 
[76]. Notably, a 16-week intervention produced the 
strongest CT improvement (g = 1.340). 
Comparatively, shorter (2–15 weeks) and longer (24–
48 weeks) durations had less impact, indicating 16 
weeks may be an optimal duration for maximizing 
CT gains. 

 
5.2.3. Learning Environment 

 
This factor, including environments like 

mathematics, programming, robotics, STEAM, and 
STEM education, showed no significant 
differentiation in CT skill outcomes. Other studies 
similarly report that different learning settings do not 
distinctly impact CT outcomes [69], [71], [73], [76]. 
Nonetheless, STEAM education environments 
displayed the highest effect (g = 0.935), followed by 
STEM and robotics education, while programming 
and mathematics education had more modest 
impacts, suggesting STEAM’s unique effectiveness 
in fostering CT.  
 
5.2.4. ICT 

 
ICT type (e.g., Arduino, digital applications, 

robotics, Scratch) played a significant role in CT skill 
outcomes. Relevant studies support ICT's role in 
differentiating CT achievements [70], [71], [72]. 
Virtual reality, for instance, had the highest impact (g 
= 1.346), while game applications yielded weaker 
effects (g = 0.054). This suggests that ICT tools like 
virtual reality may be more effective in promoting 
CT within STEAM-integrated math education. 
 
5.2.5. Mathematics Content 

 
Mathematics content areas, including algebra, 

geometry, and probability have significantly 
influenced CT skill development. Prior research 
corroborates that specific content areas impact CT 
acquisition [70], [72]. This study found that 
integrating multiple content areas had the highest 
effect (g = 0.596), indicating that combining various 
mathematical topics may be particularly effective for 
enhancing CT skills.  
 
5.3. Implications to Mathematics Education 

 
This review demonstrates that CT interventions, 

such as mathematics instruction integrated with 
STEAM education, have a moderate positive impact 
on students' CT development.  

Furthermore, this instructional method has proven 
effective in improving students' CT achievements 
over the past two decades. Various learning models 
can be utilized within this approach. When these 
models are integrated with STEAM education—a 
teaching method aimed at enhancing students' 
problem-solving and decision-making skills, they 
yield even more positive effects on students' CT 
achievements [71], [73]. As a result, this instructional 
approach is recommended for use in mathematics 
education to enhance CT skills among students. 

Furthermore, the intervention of mathematics 
instruction integrated STEAM education during 16 
weeks on the achievement of students’ CT is more 
effective than the intervention of mathematics 
instruction integrated STEAM education during 2 - 
15 weeks and 24 – 48 weeks on the achievement of 
students’ CT. Consequently, to optimize the 
achievement of students’ CT, the implementation of 
this instructional approach should be conducted 
during 16 weeks as a relatively ideal intervention 
duration in mathematics learning activities. 

The intervention of mathematics instruction 
integrated STEAM education using virtual reality is 
more effective in optimizing students’ CT than using 
Arduino, digital application, game application, math 
laboratory, no ICT, robotics, and Scratch. This 
implies that the implementation of this instructional 
approach should be performed using the technology 
of virtual reality as a relative ideal ICT in 
mathematics education to optimize the achievement 
of students’ CT. The intervention of mathematics 
instruction integrated STEAM education is more 
effective in optimizing students’ CT in the 
combination among contents than optimizing 
students’ CT skills in algebra, geometry, number and 
operation, and probability and statistics. Therefore, 
when designing CT assessment tools, researchers 
focusing on CT skills in mathematics education 
should integrate mathematics content. This process 
requires the inclusion of advanced mathematical 
content. 
 
5.4. Limitations and Suggestions 

 
Some limitations in this meta-analysis should be 

noted. Access to certain documents was restricted, 
and statistical information necessary for effect size 
computation was often lacking. Future researchers 
are encouraged to directly request access from 
authors and seek comprehensive data for analysis. 
Extending data collection periods to retrieve 
additional statistical data from authors via email or 
other contact methods may also be beneficial. 
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6. Conclusion 
 
This study deduces that STEAM-integrated 

mathematics instruction has positive moderate effect 
(g = 0.551) on the achievement of students’ CT 
skills. Moreover, mathematics instruction using 
STEAM approach significantly affects students' 
computational thinking (CT) skills. Factors such as 
the duration of the intervention, use of ICT, content 
area, and participant demographics play a significant 
role in affecting the achievement of students’ CT 
skills. It means that these factors cause the 
differences of students’ CT skills. However, other 
factors, such as class size and learning environment 
did not show significant role on the achievement of 
students’ CT skills. It means that these factors do not 
cause the difference of students’ CT skills. This 
approach holds promise for CT skill development in 
mathematics education. 
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