
TEM Journal. Volume 14, Issue 1, pages 44-54, ISSN 2217-8309, DOI: 10.18421/TEM141-05, February 2025.

44 TEM Journal – Volume 14 / Number 1 / 2025.

Domain-Driven Design in Cloud Computing:
.NET and Azure Case Analysis

Jordan Jordanov 1, Pavel Petrov 1, Ivan Kuyumdzhiev 1,
Julian Vasilev 1, Stefka Petrova 1

1 University of Economics - Varna, Varna, Bulgaria

Abstract – The study explores the integration of
domain-driven design (DDD) with the cloud computing
framework provided by the Microsoft Azure platform.
Limited research exists that connects theoretical DDD
principles with practical applications in cloud
environments, and this research tries to focus on how
DDD concepts could be effectively implemented in
PaaS and IaaS cloud models. In this regard, the main
research question is: How could DDD concepts be
effectively applied on the Microsoft Azure platform
using .NET services? The study hypothesizes that by
applying the main components of the DDD, such as
event-driven patterns, aggregates, and bounded
contexts, one could significantly enhance the
scalability, maintainability, and efficiency of the cloud
applications. The research uses a case study approach
as a main research method and evaluates the practical
application of DDD within the context of Microsoft
Azure’s cloud models. The study finds that DDD offers
significant advantages in structuring cloud-native
applications, especially in the design of application and
data layers. Key findings of the study suggest that
DDD, when combined with Azure's cloud capabilities,
can provide a robust framework for building scalable,
resilient software systems, although some problems
remain in aligning theoretical DDD with practical
cloud development frameworks.

DOI: 10.18421/TEM141-05
https://doi.org/10.18421/TEM141-05

Corresponding author: Pavel Petrov,
University of Economics - Varna, Varna, Bulgaria
Email: petrov@ue-varna.bg

Received: 07 August 2024.
Revised: 04 December 2024.
Accepted: 10 December 2024.
Published: 27 February 2025.

© 2025 Jordan Jordanov et al.; published
by UIKTEN. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivs 4.0
License.

The article is published with Open Access at
https://www.temjournal.com/

Keywords – Domain driven design, cloud computing,
case study, software architecture, Azure .NET.

1. Introduction

DDD has become an important framework in the
constantly evolving field of software development,
enabling the creation of advanced applications. DDD
creates a collaborative environment by closely
linking software design with the main business
domain [1]. This approach encourages technical and
domain experts to work together to develop software
that is flexible and can easily adapt to evolving
business requirements. Although this approach shows
potential, there is still a notable lack of practical
studies examining the relationship between DDD
concepts and cloud development frameworks for
constructing web, mobile, desktop, or Internet of
Things (IoT) applications. This paper addresses the
following research question:

How could DDD concepts be effectively applied
on the Microsoft Azure platform using .NET
services?

The study seeks to provide a thorough view of the
strategic decisions, architectural components, and
outcomes associated with these integrations. To do
this, the study employs a research technique that
includes a variety of use scenarios.

DDD offers a philosophy and set of guidelines,
such as bounded contexts (BCs) and ubiquitous
language [2], [3]. Also, there are programming
models such as “aggregates” and “value objects,” as
well as patterns such as command query
responsibility segregation (CQRS) and event
sourcing (ES). These principles are suitable for
microservices, functional programming (FP), and
event-driven development. An integrated test suite
also could be used to provide the integrity of all of
them [4].

The microservices architecture is defined as the
process of breaking down applications into small,
autonomous services, hence establishing one of the
cloud-native standards [6]. Each microservice, which
encapsulates a specific business function, may be
deployed, scaled, and managed individually.

https://doi.org/10.18421/TEM141-05
mailto:petrov@ue-varna.bg
https://www.temjournal.com/

TEM Journal. Volume 14, Issue 1, pages 44-54, ISSN 2217-8309, DOI: 10.18421/TEM141-05, February 2025.

TEM Journal – Volume 14 / Number 1 / 2025. 45

This allows one to take advantage of cloud
platforms' inherent flexibility and resilience.
Continuous integration, continuous delivery, and
dynamic resource allocation are made easier to
implement using microservices. The Cloud Native
Computing Foundation (CNCF) [7] defines
microservices as system components that are loosely
coupled, robust, managed, and observable. When
used in conjunction with strong automation, they
enable engineers to make significant and predictable
changes, frequently with minimal effort. There have
been numerous studies of the world’s leading
corporations, such as Netflix and Uber [8]. Netflix
and Uber support online platforms that offer a wide
range of services. New versions of the software
responsible for these services are frequently released,
with thousands of web applications being deployed
on a daily basis.

The primary objective of microservice
architecture is to establish explicit and well-defined
boundaries. This process includes identifying BCs
and associated aggregates and determining the types
of commands and queries that end users perform on
the system. BC is a fundamental concept in DDD that
acts as a means of separating different components to
enhance their ease of management and scalability. It
emphasizes the importance of self-reliance by
encompassing entities, repositories, factories, and
application services [9]. BCs are components of the
solution architecture designed to address specific,
logically separated sub-domains. The degree of
physical isolation introduces an additional level of
complexity, depending on factors such as precise
specifications, codebase, and the size of the
development team.

At least one aggregate is present in BC.
Aggregates are identified through thorough analysis
sessions, typically leading to the recognition of
different entities and value types that naturally form
groups under the control of a main entity. When this
kind of grouping happens, it signifies the
demarcation of a collective, formed exclusively by
business regulations. An aggregate function acts as a
domain model by grouping multiple entities together
under a single conceptual framework.

The present study investigates the practical
implications of utilizing FP to provide an approach
for creating aggregates and other DDD models. FP is
primarily concerned with two unique features: The
integrity of method signatures and referential
transparency [10]. The idea of method signature
honesty assures that a function's signature accurately
and completely captures all potential input and
output values. Referential transparency ensures that a
function's output is consistent for every given input,
with no additional side effects.

Furthermore, FP is intended to reduce code
complexity, making it easier to comprehend and
analyze rationally. It is also thought to simplify unit
testing while increasing the modularity and
composability of software components.

The immutability in FP is considered important,
as mutable operations have the potential to introduce
“dishonesty” into the code. The absence of clarity
hampers the capacity of a software developer to
participate in rational reasoning, making the process
of debugging more complex and creating barriers to
multi-threading programming. Furthermore, the
implementation of CQRS and the integration of
fundamental domain logic improve FP utilization.
Railway-oriented programming, influenced by Scott
Wlaschin, offers a more efficient method of
structuring processes in contrast to conventional
methodologies that involve lengthy and complex
code blocks containing numerous "if/else" and
"try/catch" statements [11]. The functional approach
employs extension methods to improve legibility by
reducing redundant code and emphasizing the main
logical sequence.

In this context, it is important to analyze the logic
of the code in real time by putting the system under
test (SUT). Unit testing for codebases of this nature
primarily entails supplying input to functions and
verifying the outcomes [12]. Test doubles,
particularly mocks, can support these needs by
replacing dependencies with unpredictable behavior,
thereby achieving the desired outcome. Unit testing
offers the key benefit of ensuring the integrity of
existing functionality while allowing for efficient
modifications to code.

Based on a case study from the Department of
Computer Science at NC State University [13], unit
testing is considered a crucial safeguarding measure.
Within this framework, a key performance indicator
(KPI) is code coverage, also known as test coverage.
This metric quantifies the extent to which the source
code of a program is tested by a particular test suite.
Code coverage is expressed as the ratio of the
number of lines of code covered by tests to the
overall number of lines in the codebase, represented
as follows: Code coverage = lines of code covered /
overall number of lines.

This ratio provides a numerical figure that reflects
the level of testing and aids in the identification of
untested code segments. High code coverage is
associated with improved software quality because it
indicates that a large part of the code was executed
during testing, potentially revealing flaws and
guaranteeing that the software performs as intended
under varied scenarios. However, even 100% code
coverage does not guarantee the absence of problems
because it does not consider the quality or
thoroughness of the tests themselves.

TEM Journal. Volume 14, Issue 1, pages 44-54, ISSN 2217-8309, DOI: 10.18421/TEM141-05, February 2025.

46 TEM Journal – Volume 14 / Number 1 / 2025.

Nonetheless, striving for increased code coverage
can help to produce more robust and maintainable
code by promoting thorough testing techniques.

As an illustration of useful advantages, utilizing
cloud technologies allows Progressive Web Apps to
scale seamlessly to handle large volumes of traffic
and ensure optimal performance. Also, cloud
providers offer advanced security features and
compliance certifications, ensuring that applications
are protected against threats and adhere to industry
standards and regulations.

2. Methodology

The aim of this study is to explore and provide an

overview of software development with DDD,
CQRS, and ES patterns via Microsoft .NET and
Azure technologies. There is currently an uncertainty
and a gap in research regarding the implementation
of DDD concepts. The goal of this study is to fill this
gap and demonstrate strong and reliable development
processes. For this goal, case study research was
deemed an appropriate research method. Case
studies, representing qualitative research methods,
are commonly used in computer and social science.
Runeson et al. [14] suggest choosing the case study
design when the selected case serves as a critical case
for testing a well-formulated theory with clearly
defined propositions, as demonstrated in Subsection
2.3. The nature of the current case study is
confirmatory (explanatory). The purpose of the case
study is to test the DDD theories that have been
deduced from previous research [15].

2.1. Tools and Technologies

Table 1 shows the differences between the two

main cloud service models: IaaS and PaaS.

Table 1. Classification across IaaS and PaaS cloud
models

Layers IaaS and PaaS Management
Application The IT department manages both IaaS

and PaaS.

Data The IT department manages both IaaS
and PaaS.

Runtime The IT department manages IaaS, the
cloud provider handles PaaS.

Middleware The IT department manages IaaS, the
cloud provider handles PaaS.

OS The IT department manages IaaS, the
cloud provider handles PaaS.

Virtualization The cloud provider manages both IaaS
and PaaS.

Within the IaaS model, the cloud provider
assumes responsibility for managing fundamental
resources such as networking, storage, servers, and
virtualization. On the other hand, the user is
accountable for handling the operating system,
middleware, runtime, data, and applications. In
contrast, the PaaS model expands the provider's
obligations to encompass the operating system,
middleware, and runtime. This relieves the software
engineers from the burden of managing these tasks
and enables them to concentrate exclusively on their
data and applications [5].

Among the above-presented models, PaaS and, to
some extent, IaaS have emerged as key areas of focus
for DDD. PaaS and IaaS offer customers the tools
and systems needed to create, construct, and deploy
applications. The importance of DDD concepts is
evident in this context, particularly regarding the
“data” and “applications” layers.

.NET is widely acknowledged as a key option for
developing scalable and robust corporate
applications. Based on statistics provided by
Techempower (Round 22, October 2023) [16], it has
been observed that ASP.NET demonstrates
efficiency and performance compared to several
alternative web application platforms and full-stack
frameworks, as shown in Table 2.

Table 2. Comparison of server technologies

Technology Programming
language

Processed
requests per

second
Actix Rust ~ 171 484
ASP .NET Core C# ~ 144 304
Fiber Go ~ 116 952
NodeJS Javascript / C++ ~ 33 868
Spring Java ~ 24 082
Django Python ~ 14 707
Laravel PHP ~ 7 355

Based on the provided data, ASP.NET Core could

be acknowledged to be faster than NodeJS, Fiber,
Laravel, Django, and Spring. The significant
performance advantage shows ASP.NET Core's
efficiency and capability for handling high-
performance web applications. Recently, Microsoft
has outlined a strategic plan for the development and
maintenance of .NET, guaranteeing regular upgrades
and expanded library support [17]. Also, .NET was
recently recognized in Stack Overflow surveys as the
“#1 Most Loved Framework” for three consecutive
years (2019, 2020, 2021) [18]. The .NET ecosystem
is also active in the open-source movement, with its
GitHub repository being ranked among the “Top 30
Highest Velocity OSS Projects”.

TEM Journal. Volume 14, Issue 1, pages 44-54, ISSN 2217-8309, DOI: 10.18421/TEM141-05, February 2025.

TEM Journal – Volume 14 / Number 1 / 2025. 47

GitHub data indicates that C#, the primary
language in the .NET ecosystem, ranks among the
top five programming languages [19]. This statistic
highlights the growing interest in and adoption of the
.NET framework in different academic fields.
Additional factors include the use of supplementary
libraries such as Minimal API,
EntityFramework, MediatR, Optional, Marten,
SignalR, AutoMapper, Serilog, Stylecop, Swagger,
FluentValidation, xUnit, Autofixture, Moq, and
Shouldly.

Microsoft Azure offers extensive support for
.NET applications via integrated development
environments (IDE) such as Visual Studio. This
integration enhances the development experience and
ensures interoperability within the broader Microsoft
ecosystem. Figure 1, obtained from “Flexera's 2023
State of the Cloud Report” [20], showcases the usage
trends of public cloud providers across different
enterprises.

Figure 1. Cloud service providers used by organizations in the public sector in 2023 [20].

The findings derived from a sample of 750

participants indicate that Azure has emerged as a
major player in the cloud services market. Around
41% of firms are utilizing its platform to execute
substantial workloads, 30% are using it for certain
tasks, and it is currently in the testing phase at
approximately 13% of firms. According to data from
Microsoft, Azure exhibited a substantial growth rate
of 31% in the quarter ending March 2024. Azure's
extensive network of over 60 data centres surpasses
the offerings of other cloud providers. Many major
clients, such as Samsung, Boeing, eBay, and BMW,
rely on Azure's services. The collected data shows
that using .NET and Azure is a good option for
performing a thorough analysis of the
implementation of DDD.

2.2. Case Selection

The process of case selection and data collection

plays an integral role in the empirical foundation of
this research. This study is motivated by multiple
cases, specifically drawing on the Microsoft
reference applications eShopOnContainers [21] and
eShopOnAzure [22]. The emphasis on order
administration functionalities serves as a framework
for streamlining the more complex aspects of
enterprise-level systems.

Three relevant demonstrations for these systems

are presented in Table 3.

Table 3. Cases of enterprise-level systems

Case System Description
A Order

Management
A digital system that
oversees the entire lifecycle
of an order. It centralizes the
management of all sales
channels, ensuring precise
picking, packing, and
shipping processes.

B E-commerce An online platform that
enables the exchange of
products and services over
the Internet. By doing this, e-
commerce technology
improves convenience for
both consumers and
enterprises.

C Supply Chain
Management

Software platforms for real-
time visibility, ensuring the
efficient flow of goods,
information, and finances.

TEM Journal. Volume 14, Issue 1, pages 44-54, ISSN 2217-8309, DOI: 10.18421/TEM141-05, February 2025.

48 TEM Journal – Volume 14 / Number 1 / 2025.

The process of data collection aligns with the
functional and non-functional requirements identified
through a review of existing research [23], [24] and
guidelines [25]. This case study primarily provides
an analysis of the implementation procedures related
to the registration of order records, as well as the
subsequent modifications made by end users and
external devices.

2.3. Conceptual Framework

The conceptual framework illustrated in Figure 2

combines domain-centric design with several
architectural patterns for cloud microservices design
and development. BC, ubiquitous language, entities,
value objects, and aggregates capture and articulate
the complexities of the business domain.

CQRS is used to categorize the concerns, and ES
is incorporated to maintain a reliable audit trail of
changes. TDD drives the design of the system
through the “tests-first” approach, and the case study
methodology provides a practical validation of the
framework.

Applications currently rarely fit neatly into a
single paradigm; instead, they exhibit varying
degrees of complexity. Consequently, attempting to
apply a single modeling strategy across all
applications is ineffective. Recognizing this, the case
study methodology is viewed as a strategy, as it
aligns with the research topic, namely the impact of
DDD on cloud solutions. Case study research [26] is
often regarded as a valuable method for facilitating
the establishment of comprehensive knowledge of a
particular phenomenon, aligning with the aims of the
present study.

Figure 2. Conceptual framework model of the DDD approaches in the cloud environment

3. Results

This section presents a combination of visual

representations and data specifications of the
system’s architecture. These findings reinforce the
adoption of DDD, CQRS, and ES within business
management.

3.1. Applying BC and CQRS to Microservice

Architecture

The concept of a BC, which refers to a well-

defined area of responsibility delineated by a distinct
border, strongly aligns with the fundamental
principles of microservice design. Within a business
domain, BC serves as a container for a fundamental
business idea, connecting functionality and data
models.

TEM Journal. Volume 14, Issue 1, pages 44-54, ISSN 2217-8309, DOI: 10.18421/TEM141-05, February 2025.

TEM Journal – Volume 14 / Number 1 / 2025. 49

As shown in Figure 3, the design of the system is
characterized by the presence of three primary
microservices, namely the Receiver API, the
Command API, and the Query API.

These microservices encapsulate separate, distinct
duties within the order management BC. The IoT
devices are integrated with the Receiver API,
guaranteeing the effective management and queuing
of incoming requests for further processing.

The Command API is responsible for
coordinating order data persistence and ensuring
consistent interactions with the writing database.

On the other hand, the Query API enables the
retrieval of order information by directly combining
with the read database. These two APIs provide
services to user interface (UI) clients. The concept of
segregation fosters a modular and easy-to-maintain
system architecture, hence increasing resilience to
the inherent complexities of order management
processes. The units of work have defined limits that
are consistent with the CQRS.

Figure 3. UML component diagram that illustrates the structure and
relationships of microservices within their respective BC

Another feature of CQRS, especially when

structured as a series of reusable requests and
responses, is the use of the "mediator" pattern [27].
The mediator facilitates communication between
components by providing a single interface for
sending requests, which are then routed to in-process
handlers. In this architecture, commands and queries
represent requests, and results and data represent
responses. Both sorts of requests and responses are
commonly linked to user actions. To further extend
the capabilities of the mediator pipeline, additional
behaviors, such as contextual logging, metrics,
validation, and authorization, can be integrated. For
example, base algorithms may be placed at the top
level by having an abstract class
BaseHandler<TCommand> that inherits the
ICommandHandler<TCommand> interface. So, at
this level of abstraction, Serilog, Azure App Insights,
Fluent Validation, and Automapper will let the
developer access the event bus, map functions, and
validation logic.

The core arrangement of DDD consists of the
application, domain model, and infrastructure layers,
as mentioned above.

Figure 4 illustrates the structuring of the layers

into separate .NET assemblies.
The figure represents the project's structural

organization and shows a logical arrangement of
various containers for predetermined objects. The
“Orders API” is the top-level hierarchy, which
includes the “Orders Command API,” the “Orders
Query API,” and the “Orders Receiver API.” This
Web API enables communication between the
“Business,” “Core,” and “Persistence” assemblies.
The “Core” assembly serves as the central hub for
commands, queries, and validation models.

Figure 4. DDD organized project structure

TEM Journal. Volume 14, Issue 1, pages 44-54, ISSN 2217-8309, DOI: 10.18421/TEM141-05, February 2025.

50 TEM Journal – Volume 14 / Number 1 / 2025.

The business assembly contains the command and
query handlers as well as the connections to third-
party services. The domain assembly, on the other
hand, contains aggregates, entities, events, and data
transfer objects (DTOs). Finally, the persistence
assembly includes the necessary repository classes
for performing data storage and retrieval operations.
Moreover, the test project, which is separate from the
“source” directory, consists of a comprehensive set
of integration tests created using the test-driven
development (TDD) methodology. This architecture
guarantees a resilient and easily manageable
foundation of code, adhering to the most effective
methods in the field of software engineering.

3.2. Ubiquitous Language via Functional Programming

Ubiquitous language is a linguistic framework

used in DDD to facilitate cohesive communication
among team members regarding high-quality
software code. It supports the process of defining and
determining the dimensions of event handlers. The
use of ubiquitous language improves the process of
building specialized software by describing it via
core ideas and their associated subprocesses.
Successful execution requires a cooperative effort
between software development teams and individuals
with specialized knowledge in the relevant field. In
an ideal situation, it is expected that all stakeholders
possess a comprehensive understanding of the source
code, enabling them to propose or endorse
improvements, as well as detect possible issues or
edge cases. Within the domain of C# and F#
programming, the functional “Either” monad arises
as a sophisticated instrument for expressing complex
business logic in a manner that corresponds to
sequential operation descriptions [28]. This approach
allows for the representation of challenging scenarios
in a pseudocode structure and promotes a smooth
transition into executable code suitable for
production. In accordance with the specifications set
out by ubiquitous language, the following generic
structure of the “Either” type is proposed:

• A property of the Boolean data type called

IsSuccessful.
• A generic function called Match, accepts

two parameters: Func<T, TResult>
success and Func<TException, TResult>
error.

• A generic function called Map, uses
Match internally to return another
Either<TResult, TException> by accepting
the mapping function.

• A generic function called flatMap, which
is similar to Map but skips wrapping the
success value into an Either.

The “Match” method abstracts the success/error
condition and necessitates the handling of both
occurrences. The appropriate way to use an “Either”
type is to consistently supply both handlers, since
attempting to handle just one instance (such as only
the success state) would result in a compiler error.

On the other hand, the “Map” function examines
whether the “Either” has a value that signifies
success. If so, it applies a function that modifies the
value. Alternatively, in the case of an exception, it
immediately provides the exception value in a
“transformed” structure. The “Map” function
behaves as follows [29]: (C<T>, (T => T2)) =>
C<T2>

The method accepts the container type C<T> and
applies the specified (T => T2) function to the inner
value. In this regard, it is worth mentioning the
functors, since these are the types that implement a
map function in FP. Furthermore, the flatMap
function has a strong resemblance to the map, the key
distinction being that it only takes transformation
functions that yield another “Either.” This enables
software developers to avoid repeatedly wrapping up
the outcome. The flatMap function behaves as
follows: (C<T>, (T => C<T2>)) => C<T2>

In the context of FP, types that include a flatMap
function, among other features, are referred to as
monads. In summary, the fields and functions of the
“Either” monad offer a streamlined method of
chaining operations, making the code more readable
and maintainable. As an example of this, the
following structure describes the process for creating
a new order.

├─── POST HTTP request with input data
│ Flat Map ├─── validation of input fields or fail
│ Flat Map ├─── check duplicate content or fail
│ Flat Map ├─── persist in the database or fail
│ Flat Map ├─── forwarding to a message queue
│ Match ├─── matching the result with either a

success object and an HTTP 201
response code or a predefined error
structure with a code in the range of
400-500.

3.3. Referencing the Event Sourcing

As shown above, the adoption of CQRS can

influence several aspects, such as storage techniques
and data distribution [30]. In this context, a
significant element is the transition in the software
mindset from “models to persist” to “events to log.”
This feature emphasizes the event-driven nature of
DDD and CQRS, in which changes to data are not
only recorded in models but also documented as
aggregable events. ES is a pattern that differs from
traditional data storage methods in that it
encapsulates data as a series of events.

TEM Journal. Volume 14, Issue 1, pages 44-54, ISSN 2217-8309, DOI: 10.18421/TEM141-05, February 2025.

TEM Journal – Volume 14 / Number 1 / 2025. 51

It offers a systematic approach for tracking data
modifications, particularly in distributed systems, by
providing a comprehensive audit trail detailing when,
by whom, and what specific data alterations were
made. However, ES has problems with data retrieval
efficiency. To address this problem, ES incorporates
the notion of “snapshots,” which represent the
aggregates from the DDD. Moreover, the use of ES
is intrinsically aligned with event-driven
architectures [31], facilitating the dissemination of
targeted event notifications. Because it cannot be
changed, this pattern protects the accuracy of data,
makes it easier to track all activities related to a
domain, and makes it easier to share data in
distributed systems. The capability to replay events
offers flexibility in processing and deriving various
data projections that have the potential to be a
primary source.

The event store database [32] is a specialized
storage system based on the ideas of ES. The integral
character of this pattern stems from its goal of
continuously storing events that indicate changes in a
system's state rather than storing the state itself. The
primary goal of this database is to serve as a
repository where new data may only be added, not
destroyed, and old data cannot be changed. This
design feature ensures that once an event has been
recorded, it cannot be modified, preserving the
historical record's correctness and chronological
order. Another aspect of the database is its capacity
to reconstitute system states at any point in time. By
using these databases, companies have the potential
to acquire detailed information of system behaviors
and patterns, which facilitates the adoption of
domain-driven decision-making processes and
extensive auditing functionalities.

The schema of the suggested data store
encompasses two primary database tables: “streams”
and “events”. The Nuget package Marten, a .NET
Transactional Document DB and Event Store that
exclusively works with PostgreSQL, serves as the
foundation for this schema. Streams serve as a
foundation for organizing and categorizing events.
They provide a history of an aggregate, enabling
state reconstruction, concurrency control, scalability,
and interoperability. Table 4 provides a description
of the recommended persistent model.

Table 4. Description of the “streams” ES table

Field Description
ID A universally unique identifier that

likely represents the primary key for
each stream.

Type Specifies the type of the stream, which
could be a category or classification.

Version Denotes the version number of the
stream.

Timestamp Capture the exact moment when the
record was either created or last
updated.

Snapshot Represents a state capture of the
stream at a certain version, enabling
faster data retrieval.

Events are fundamental units in event sourcing.

They capture state changes and actions within a
system. They provide historical immutability,
auditability, temporal insights, decoupling,
compensation, and error handling. Events are not
passive records but rather active, ensuring
consistency, accountability, and adaptability. They
enable detailed data analysis, which enables the
administrators to get deep insights and make
informed decisions. Table 5 describes the proposed
structure.

Table 5. Description of the “events” ES table

Field Description

ID Unique identifier for each event.

StreamID Connects events to their corresponding
stream, establishing a relationship with
the streams table.

SeqID A sequential identifier, potentially
representing the order in which events
occur.

Type Specifies the type of the event.

Timestamp Specifies when the event was recorded.

Data Capture the data payload of each event.

TEM Journal. Volume 14, Issue 1, pages 44-54, ISSN 2217-8309, DOI: 10.18421/TEM141-05, February 2025.

52 TEM Journal – Volume 14 / Number 1 / 2025.

4. Discussion

This section aims to assess the effectiveness of

the fundamental DDD elements in enhancing an
Azure cloud system. This analysis will not only
provide valuable insights for the academic
discussion, but it will also establish distinct
programming principles by addressing the research
question. The purpose of the findings is to provide
practical advice for software developers and
architects who are responsible for creating robust
data structures and algorithms.

The Azure cloud, which consists of more than 200
products, is specifically designed to facilitate the
creation and implementation of innovative solutions.
Managed cloud platforms simplify operations by
requiring only resource configuration and source
code implementation. Nevertheless, these benefits
are offset by associated expenses that need to be
justified through the IT department. To showcase this
advanced methodology based on the architecture
from the previous section, figure 5 depicts a set of
IaaS and PaaS services.

Figure 5. Diagram of high-level cloud services

The list includes a load balancer that distributes

incoming traffic to the Order Receiver API. This API
is deployed on a virtual machine scale set. Utilizing a
service bus enables independent communication
between services, thereby improving the system's
robustness and capacity for growth. Furthermore, the
Order Command API and the Order Query API are
implemented on Managed Kubernetes Services, thus
enhancing the ability to scale and effectively manage
containerized applications. Cosmos DB replica sets
are implemented to ensure data availability and fast
access in multiple regions. The translation process
from component to high-level abstraction
underscores the integration of diverse capabilities
necessary to meet the demands of new features and
their increasing complexity [33]. The findings
indicate the need to implement a comprehensive set
of technologies and patterns in order to maximize
benefits and ensure the seamless operation of system
components.

Monitoring and analytics play a vital role in
cloud-based management systems [34], [35]. Azure
Monitor plays a crucial role in this ecosystem,
consolidating data from various sources. Different
components of the infrastructure, including mobile
and web applications and APIs, containers, virtual
machines, load balancers, and databases, provide
data for App Insights.

Visualization tools, such as dashboards and

workbooks from Power BI, improve user
involvement and aid in the understanding of data.

DDD solutions do have specific limitations that
can lead to heightened complexity. For example, the
decisions regarding persistence with ES might result
in the gathering of large amounts of event logs,
which can pose difficulties regarding long-term
maintenance and support. Programmers accustomed
to traditional object-oriented programming (OOP)
may find the limitations of FP in the .NET
framework to be inefficient and challenging to learn.

Integrating and conducting unit testing within a
DDD framework requires careful planning. The
reason for this is the nature of domain models, which
can make it difficult to isolate individual classes. In
Azure, the wide array of services and configurations
can sometimes be overwhelming, causing confusion
when trying to make the best choices. Also,
depending only on .NET and Azure could result in
vendor lock-in, which would restrict the system's
flexibility and its potential to be migrated to
alternative platforms such as Java and Amazon Web
Services (AWS) or Go and Google Cloud Platform
(GCP).

TEM Journal. Volume 14, Issue 1, pages 44-54, ISSN 2217-8309, DOI: 10.18421/TEM141-05, February 2025.

TEM Journal – Volume 14 / Number 1 / 2025. 53

5. Conclusion

Motivated by the growing interest in DDD within
the software development community, this study
aimed to assess the implications of incorporating
DDD into cloud-native services using Azure and
.NET. The ideas of microservices, BC, and CQRS
are very important to this adoption because they
make sure that each part is logically separate and can
work on its own. The practical use of FP and ES
persistence was investigated. The paper outlines both
the benefits and challenges of using these advanced
programming paradigms, giving significant insights
for organizations and developers navigating
comparable technological shifts. Implementing TDD
practices ensures that the codebase is durable and
flexible in the face of modifications. The efficiency
of all these patterns is based on managing complex
web platforms that require ongoing integration,
delivery, and flexible resource allocation. The
inclusion of .NET alongside Azure emphasizes its
importance and ability to foster creativity and
growth. To summarize, incorporating DDD into
cloud-native apps not only follows established
industry standards but also addresses the changing
demands of modern software development. This
strategy keeps applications strong, adaptive, and
capable of fulfilling new requirements.

Given that this article primarily focuses on
examining the patterns and principles for handling
complexity in cloud-based services, it is considered
important to pay more attention to the technical
aspects and communication techniques used by
DDD-oriented microservices.

Acknowledgements

This research is financially supported by NPI-67/2023
from the University of Economics - Varna Science Fund.

References:

[1]. Sangabriel-Alarcón, J., et al. (2023). Domain-driven
design for microservices architecture systems
development: A systematic mapping study.
Proceedings of the 11th International Conference in
Software Engineering Research and Innovation
(CONISOFT), 25-34.

[2]. Satapathi, A., & Mishra, A. (2022). Developing
Cloud-Native Solutions with Microsoft Azure and
.NET. Apress.

[3]. Kapferer, S., & Zimmermann, O. (2020). Domain-
specific Language and Tools for Strategic Domain-
driven Design, Context Mapping and Bounded
Context Modeling. MODELSWARD, 299-306. Doi:
10.5220/0008910502990306

[4]. Litvinov, O., & Frolov, M. (2024). On the migration
of domain-driven design to CQRS with event sourcing
software architecture. Information Technology:
Computer Science, Software Engineering and Cyber
Security, 1(1), 50-60.

[5]. Stuckenberg, S. (2014). Exploring the organizational
impact of software-as-a-service on software vendors: The
role of organizational integration in software-as-a-
service development and operation. Lang.

[6]. Zhong, C., et al. (2024). Domain-driven design for
microservices: An evidence-based investigation. IEEE
Transactions on Software Engineering, 50(6), 1425-1449

[7]. Jiménez, J. V., & Sánchez, A. G. (2024). Kubernetes and
Cloud Native Associate (KCNA) Study Guide: In-Depth
Exam Prep and Practice. O'Reilly Media.

[8]. Rocha, Á., et al. (2020). Trends and Innovations in
Information Systems and Technologies. Springer.

[9]. Özkan, O., Babur, Ö., & Brand, M. V. D. (2023).
Domain-Driven Design in Software Development: A
Systematic Literature Review on Implementation,
Challenges, and Effectiveness. arXiv preprint
arXiv:2310.01905.

[10]. Buonanno, E. (2022). Functional Programming in C#.
Simon and Schuster.

[11]. Wlaschin, S. (2018). Domain modeling made functional:
Tackle Software Complexity with Domain-Driven Design
and F#. The Pragmatic Bookshelf.

[12]. Khorikov, V. (2020). Unit Testing Principles, Practices,
and Patterns. Simon and Schuster.

[13]. Williams, L., Kudrjavets, G., & Nagappan, N. (2009).
On the Effectiveness of Unit Test Automation at
Microsoft. ISSRE 2009, 20th International Symposium on
Software Reliability Engineering, 81-89.

[14]. Runeson, P., Host, M., Rainer, A., & Regnell, B. (2012).
Case study research in software engineering: Guidelines
and Examples. John Wiley & Sons.

[15]. Jordanov, J., & Petrov, P. (2023). Domain driven design
approaches in cloud native service architecture. TEM
Journal, 12(4), 1985–1994. Doi: 10.18421/TEM124-09

[16]. Pham, T. A. (2024). Best Popular Backend Frameworks
by Performance Benchmark Comparison and Ranking in
2024. DEV Community. Retrieved from:
https://dev.to/tuananhpham/popular-backend-frameworks-
performance-benchmark-1bkh
[accessed: 02 May 2024].

[17]. Ramel, D. (2022). VS Code and Visual Studio Rock the
2022 Stack Overflow Developer Report. Visual Studio
Magazine. Retrieved from:
https://visualstudiomagazine.com/articles/2022/06/23/stac
k-overflow-2022-survey.aspx
[accessed: 03 May 2024].

[18]. Ozkaya, M. (2024). Why .NET Rocks: The Latest Scoop
on .NET 8 and C# 12. Medium. Retrieved from:
https://mehmetozkaya.medium.com/why-net-rocks-the-
latest-scoop-on-net-8-and-c-12-064cba68e4fe
[accessed: 12 May 2024].

[19]. AIN. (2023). Top 10 programming languages of 2023 in
GitHub report. Ain.ua.. Retrieved from:
https://ain.capital/2023/11/15/top-10-programming-
languages-of-2023-in-github-report/
[accessed: 05 July 2024].

[20]. Luxner, T. (2024). Cloud computing Stats: Flexera 2024
State of the Cloud Report. Flexera Blog. Retrieved from:
https://www.flexera.com/blog/cloud/cloud-computing-
trends-flexera-2024-state-of-the-cloud-report/
[accessed: 07 July 2024].

https://dev.to/tuananhpham/popular-backend-frameworks-performance-benchmark-1bkh
https://dev.to/tuananhpham/popular-backend-frameworks-performance-benchmark-1bkh
https://visualstudiomagazine.com/articles/2022/06/23/stack-overflow-2022-survey.aspx
https://visualstudiomagazine.com/articles/2022/06/23/stack-overflow-2022-survey.aspx
https://mehmetozkaya.medium.com/why-net-rocks-the-latest-scoop-on-net-8-and-c-12-064cba68e4fe
https://mehmetozkaya.medium.com/why-net-rocks-the-latest-scoop-on-net-8-and-c-12-064cba68e4fe
https://ain.capital/2023/11/15/top-10-programming-languages-of-2023-in-github-report/
https://ain.capital/2023/11/15/top-10-programming-languages-of-2023-in-github-report/
https://www.flexera.com/blog/cloud/cloud-computing-trends-flexera-2024-state-of-the-cloud-report/
https://www.flexera.com/blog/cloud/cloud-computing-trends-flexera-2024-state-of-the-cloud-report/

TEM Journal. Volume 14, Issue 1, pages 44-54, ISSN 2217-8309, DOI: 10.18421/TEM141-05, February 2025.

54 TEM Journal – Volume 14 / Number 1 / 2025.

[21]. De La Torre, C., Wagner, B. & Rousos, M. (2023).
.NET microservices. architecture for containerized
.NET applications. Microsoft Learn. Retrieved from:
https://learn.microsoft.com/en-
us/dotnet/architecture/microservices/
[accessed: 15 July 2024].

[22]. Vettor, R., & Smith, S. (2023). Architecting cloud
native .NET applications for Azure. Microsoft Learn.
Retrieved from:
https://learn.microsoft.com/en-
us/dotnet/architecture/cloud-native/
[accessed: 18 July 2024].

[23]. Singh, U. (2022). Order Management System - UX
case study. Medium. Retrieved from:
https://medium.com/@urvashi_s/order-management-
system-ux-case-study-f1a2f874161f
[accessed: 19 July 2024].

[24]. Pagell, M., & Wu, Z. (2009). Building a more
complete theory of sustainable supply chain
management using case studies of 10
exemplars. Journal of supply chain
management, 45(2), 37-56.

[25]. Cwalina, K., Barton, J., & Abrams, B.
(2020). Framework design guidelines: conventions,
idioms, and patterns for reusable. net libraries.
Addison-Wesley Professional.

[26]. Phelan, S. (2011). Case study research: design and
methods. Evaluation and Research in Education,
24(3), 221-222.

[27]. Pai, P., & Xavier, S. (2017). . NET Design Patterns.
Packt Publishing Ltd.

[28]. Teatro, A., Eklund, M., & Milman, R. (2018).
Maybe and Either Monads in Plain C++17. 2018
IEEE Canadian Conference on Electrical &
Computer Engineering (CCECE), 1-4.

[29]. Nikolov, D. (2019). Shipping pseudocode to
production. DotNetCurry. Retrieved from:
https://www.dotnetcurry.com/patterns-
practices/1497/deploy-pseudocode-production
[accessed: 20 August 2024].

[30]. Garofolo, E. (2020). Practical microservices: Build
Event-Driven Architectures with Event Sourcing and
CQRS. Pragmatic Bookshelf.

[31]. Rocha, H. F. O. (2021). Practical Event-Driven
microservices architecture: Building Sustainable and
Highly Scalable Event-Driven Microservices. Apress.

[32]. Esser, S., & Fahland, D. (2019). Storing and
querying multi-dimensional process event logs using
graph databases. Lecture notes in business
information processing, 362.

[33]. Petrov, P., et al. (2021). Petrov, P., Radev, M.,
Dimitrov, G., Pasat, A., & Buevich, A. (2021). A
systematic design approach in building digitalization
services supporting infrastructure. TEM Journal:
Technology, Education, Management, Informatics,
10(1), 31-34. Doi: 10.18421/TEM101-04

[34]. Valiramani, A. (2022). Microsoft Azure Compute:
The Definitive Guide. Microsoft Press.

[35]. Petrov, P., et al. (2022). Petrov, P., Radev, M.,
Dimitrov, G., & Simeonidis, D. (2022). Infrastructure
Capacity Planning in Digitalization of Educational
Services. International Journal of Emerging
Technologies in Learning (iJET), 17(3), 299-306.
 Doi: 10.3991/ijet.v17i03.27811

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/
https://medium.com/@urvashi_s/order-management-system-ux-case-study-f1a2f874161f
https://medium.com/@urvashi_s/order-management-system-ux-case-study-f1a2f874161f
https://www.dotnetcurry.com/patterns-practices/1497/deploy-pseudocode-production
https://www.dotnetcurry.com/patterns-practices/1497/deploy-pseudocode-production

