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Abstract – Direct current (DC) motors are frequently 
utilized in various applications, and the motor's pace is 
affected by applied loads as it fluctuates. A power 
converter must be employed to control the velocity of 
the motor by varying the armature voltage. One of the 
options for the power converter is the one-quadrant 
DC chopper. In this case, the investigation will turn the 
one-quadrant chopper into a system by merging 
velocity and current control into the DC motor. The 
speed is regulated by controlling the armature voltage. 
This may be accomplished using a controlled rectifier. 
The contribution of the research is to test the 
effectiveness of Artificial Neural Network Control 
(ANN) and Proportional-Integral (PI) controllers to 
control the speed of a DC motor using a one-quadrant 
DC chopper. Therefore, due to technological 
advancements, the authors will utilize the training data 
of the artificial neural network of Proportional-
Integral controllers in MATLAB's Simulink. Test 
results demonstrate the artificial neural network 
(ANN's) superior ability to regulate system response, 
showing enhancements in delay time, rise time, 
overshoot, and steady-state error compared to the PI 
controller. These findings underscore the potential of 
ANN as a more sophisticated choice for DC motor 
control, although further research is required to fine-
tune its performance through rigorous training.  
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1. Introduction

The DC motor transforms electrical energy into 
mechanical energy through magnetic fields generated 
with direct current [1], [2], [3]. Due to their 
versatility, DC motors have extensive use in diverse 
industrial and domestic settings. They operate with 
direct current (DC) voltage, but a notable issue 
encountered is speed fluctuation induced by varying 
loads, resulting in inconsistent motor performance 
[4], [5]. DC motors have characteristics that can be 
controlled for speed, torque, and rotor position [6]. 
The DC motor control system supervises and 
regulates the motor's operational path. One approach 
to regulating the speed of a DC motor involves 
modifying its armature or field current [7]. This can 
be accomplished by varying the motor voltage 
through a power converter like a controlled rectifier 
or DC chopper.  

The DC chopper serves as a voltage converter for 
DC, providing control over the output voltage [8]. 
Choppers, like AC transformers, convert voltages, 
but they employ rapid on-off switches to transform a 
DC input voltage into a variable DC output voltage. 
DC choppers come in various types, including one 
quadrant, two quadrants, and four quadrants [9]. The 
choice of DC chopper type relies on the specific 
operational requirements of the motor, particularly 
within the DC motor's operating quadrant. 

This study employs a one-quadrant DC chopper to 
regulate DC motor speed by adjusting the armature 
current through stator voltage control. Stator voltage 
is modulated using pulse width modulation (PWM) 
to achieve the desired speed control. Apart from 
PWM, the PID (proportional-integral-derivative) 
control method is also utilized for speed regulation. 
However, contemporary technological advancements 
have led to significant changes, particularly in motor 
speed control systems, which now incorporate 
various models and methods, including artificial 
intelligence (AI) [10].  
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Artificial neural network (ANN), a form of 
artificial intelligence, has gained popularity for 
controlling DC motors [11].  

ANNs are mathematical models that mimic the 
structure and function of nerves found in biological 
systems [12]. ANNs can comprehend intricate and 
non-linear data patterns. In DC motor control, they 
discern the connection between inputs (like applied 
voltage) and outputs (like motor speed). Utilizing this 
knowledge, ANNs produce an optimal control signal 
to attain desired objectives. Their primary strength 
lies in managing the complexities, uncertainties, and 
disruptions inherent in DC motors. Additionally, 
ANNs can adapt and learn from system variations, 
enhancing the control system's reliability and 
effectiveness [13]. 

The research employs ANN to investigate its 
viability as an alternative controller, utilizing test 
data from a PI controller, which remains a prevalent 
choice in the industry. It assesses multiple control 
parameters, including time response and disturbance 
handling, to compare ANN's performance with the PI 
controllers. Achieving parity with the PI controller's 
performance suggests the potential for integrating 
intelligent control into process systems through 
further advancements. 
 
2. Literature Review 
 

In this section, there will be a background study 
and literature review regarding research that has been 
conducted by others related to this research. The aim 
is to understand the theoretical foundations and 
concepts that underlie the control methods used. This 
research combines proportional-integral (PI) control 
technique with artificial neural network (ANN) to 
improve the performance of DC motors. Therefore, 
the following literature review will present a 
comprehensive explanation of artificial neural 
network (ANN), back-propagation artificial neural 
network, direct current (DC) motor, and DC chopper 
one quadrant, which forms the basis for the 
performance analysis to be conducted. 

 
2.1. Artificial Neural Network (ANN) 
 

An artificial neural network (ANN) is a synthetic 
model that mimics the learning process of the human 
brain, also known as a human neural network (HNN) 
[14]. Certain principles governing the operation of 
the human neural network pertain to information 
storage and memory [15]. Repeated transmission of a 
particular signal through a synapse enhances its 
efficacy in transmitting the signal subsequently.  

This principle forms the foundation of the 
learning process, necessitating extensive training of 
the ANN before its effective utilization. 

Artificial neural networks, an artificial 
intelligence component, operates on the principle of 
connections, drawing inspiration from human neural 
networks [16]. The operational concept involves 
neurons receiving multiple combined signals and 
being assessed against a threshold. A response is 
generated if the signal weights are appropriately 
configured. Artificial neural networks (ANNs) 
emulate the brain's neural networks' information 
processing, serving various functions in machine 
learning, including pattern recognition, classification, 
and prediction [16], [17], [18]. The ANN's 
mathematical model comprises interconnected nodes 
(neurons) that process input data and transmit outputs 
to subsequent layers of nodes. 

In the ANN, neurons are fundamental units that 
receive input from other neurons or external sources, 
process it, and produce an output [19]. Neuronal 
behaviour in the ANN is typically determined by 
input weights and activation functions [20]. Input 
weights represent the strength or significance of each 
input (x1) to the neuron, denoted by weights (w1). 
Activation functions transform inputs into desired 
outputs, like sigmoid, hyperbolic tangent (tanh), and 
rectified linear unit (ReLU). 

 

 
 

Figure 1. Mathematical model of ANN control 
 
Figure 1 illustrates a mathematical model 

depicting the control system employing ANN, where 
the output (y) of a single neuron is represented 
mathematically by the following equations (1). 

 
𝑦 = 𝑓 (𝛴𝑖 (𝑤𝑖 . 𝑥𝑖 ) + 𝑏    (1) 

 
In this context, xi represents input values, wi 

denotes weights, b is the bias term, and f is the 
activation function. 

 
2.2. Back-Propagation Artificial Neural Network 
 

Artificial neural network (ANN) with the back-
propagation method is a type of network that 
involves guided training [21].   

ANN comprises layers of neurons and adjusts 
neuron weights based on output errors in the opposite 
direction [22].  
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The initial stage involves forward propagation to 
calculate the output error.  

Activation functions, typically involving 
logarithmic functions, are chosen for their continuity, 
differentiability, and monotonicity properties. 
Furthermore, the dataset's values are initially set. 
Training data is represented in vector format, where 
each input data corresponds to a specific target. 

The activation function selection is contingent 
upon the requirements and intended outcomes. This 
study's chosen activation functions are tensing and 
linear/purely. The tansig function represents a 
tangent sigmoid function utilized as a transfer 
function [23]. This function utilizes the hyperbolic 
tangent sigmoid formula to transform the input value 
into the output. The output range of this function 
spans from -1 to 1. Figure 2 depicts the graphical 
representation of the tansig and purelin functions. 

 
 

Figure 2. Activation functions of tansig and purelin 

𝑎 = tan 𝑠𝑖𝑔(𝑛) =  2
1+exp(−2∗𝑛)

− 1    (2) 

The linear activation function, or purelin, linearly 
relates the input to the output. Equation (3) 
represents the formula of the purelin activation 
function, where the parameter k denotes an arbitrary 
constant. 

 
𝑎 = 𝑘𝑛       (3) 

The training process of ANN through back-
propagation typically comprises three phases: the 
forward propagation stage, the backward propagation 
stage, and the weight adjustment stage [24]. In the 
feed-forward stage, input data is propagated from the 
input layer to the output layer.  

In the subsequent backward phase, each output 
unit calculates the output error, reflecting the 
difference between the observed and intended output, 
and transmits this difference backward. 

The weight adjustment phase is implemented to 
minimize the error.  

These three phases persist until a predetermined 
stopping condition is met. 
 

 

Figure 3. Architecture of the back-propagation ANN 
algorithm 

Figure 3 depicts the back-propagation technique 
structure, which includes three layers: input, hidden, 
and output. The input layer transmits the input signal 
X to the hidden layer, where calculations occur based 
on neuron weights and biases. These calculations, 
governed by the activation function, determine the 
output values for both layers. 

 
2.1. Motor Direct Current (DC) 

 
    The DC motor is an apparatus that transforms 
electrical energy, particularly in the direct current 
(DC) form, into mechanical energy [25]. When an 
electrical current traverses the coils inside a DC 
motor, it generates a magnetic field enveloping the 
armature coil in a distinct configuration. The fixed 
component of a DC motor, housing the field coil, is 
termed the stator. Conversely, the rotor, 
accommodating the armature coil, constitutes the 
motor part in motion, inducing rotation. 

This research centres on a specific category of DC 
motors termed separately excited types. This 
particular DC motor requires two distinct voltage 
sources for operation: one for the armature coil and 
another for the field coil [26]. The stationary winding 
in a DC motor is called the stator, while the rotating 
winding is termed the rotor. DC motors can operate 
as generators; conversely, DC generators can 
function as DC motors when interacting with 
magnetic fields [27].  

Figure 4 illustrates the configuration of the 
separately excited DC motor planned for examination 
in this research. 
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Chopper 

Load 

 

 

Figure 4. Schematic of separate amplifier DC motor 
 

 
 

Figure 5. Schematic circuit of one quadrant DC Chopper 
motor 

 
The equation for the separately excited DC motor 

is as follows. 
 

Vt = Ea + IaRa      (4) 

Vf = If + Rf       (5) 

The equation represents various parameters of the 
separately excited DC motor, including Vt for 
armature terminal voltage (V), Ia for armature 
current (A), Ra for armature resistance (ohm), If for 
field current (A), Rf for field resistance (ohm), Vf for 
field terminal voltage (V), and Ea for electromotive 
force (V). The general formula for the speed of the 
separately excited DC motor is represented by ωm. 
 

Ꞷm =  Ia       (6) 
 
Vt represents the motor's terminal voltage, Ia 

signifies the armature current, Ra denotes resistance, 
and Ta signifies the electromagnetic torque. From 
Equation (6), it can be deduced that adjusting the 
armature current or the voltage at the motor terminals 
facilitates the control of a DC motor's speed. 

This manipulation of the armature current can be 
executed using a power converter by altering the 
modulation of the converter switch. 

 
 
 

 In this study, the utilized power converter is a one-
quadrant DC chopper capable of operating the motor 
in the first quadrant, referred to as a forward 
motoring operation. 

 
2.3. DC Chopper One Quadrant 
 

A DC chopper is an electronic apparatus that 
modulates the voltage and current supplied to a DC 
motor by intermittently breaking the DC voltage 
circuit [28]. This process involves employing 
semiconductor devices like transistors or thyristors to 
manage current flow through the motor. A DC 
chopper serves as a DC power converter, facilitating 
the adjustment of its output voltage, hence commonly 
employed in regulating electrical devices reliant on 
DC voltage sources, such as DC motors. Depending 
on its switch configuration, a DC chopper can be 
categorized into three types: one-quadrant, two-
quadrant, and four-quadrant [29]. 

This research employs a one-quadrant DC 
chopper operating within the first quadrant of a 
quadrant system. In this quadrant, the motor 
exclusively rotates forward using direct current and 
voltage, termed forward current and forward voltage 
[30]. The diagram depicting this one-quadrant DC 
chopper is presented in Figure 5.  

 

3. Methodology 
 

This research employs an experimental 
methodology to devise and formulate a DC motor 
speed control system. The system is constructed 
around a one-quadrant DC chopper featuring an 
ANN controller. Initial data is derived from PID 
control system test results and undergoes four stages: 
data collection, architecture selection, training, and 
testing. A comparative analysis of DC motor speed 
was conducted between the PI and ANN control 
systems. Data analysis involves testing the response 
of a second-order system and assesses four specific 
parameters: Delay time, which measures the time it 
takes for the output response to demonstrate a delay 
relative to the input; This time delay is computed 
from t = 0 until the response reaches half (50%) of its 
steady-state level; Rise time is the duration for the 
response to intersect the first steady-state axis from t 
= 0; Overshoot denotes the ratio between the 
maximum response value exceeding the steady-state 
value and the steady-state value itself; Steady-state 
error expresses the ratio between the maximum 
response value exceeding the steady-state value and 
the steady-state value [31].  
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The study utilizes Simulink Matlab R2020a for 
design and simulation.  

Figure 6 illustrates the design of a DC motor 
speed control system employing a one-quadrant DC  

Chopper with an ANN controller, including 
components like the DC motor, DC chopper, speed 
control, and current control. Additionally, Figure 7 
and Figure 8 depict control system designs using PI 
and ANN, respectively. 

 

 
 

Figure 6. Schematic of separate amplifier DC motor 

 
 

Figure 7. Design schematic of a speed control system using PI. 

 
 

Figure 8. Design schematic of a speed control system using ANN 

4. Results 
 
This section displays the pathway of the collection 

of input and output data, through the initiation stage of 
ANN architecture, subsequently the training regimen 
explanation and data-testing. 

 
 
 
 
 

4.1. Collection of Input and Output Data 
 

The procedure involves gathering input and output 
data from the PI controller, which will be utilized to 
train the artificial neural network using the back-
propagation method.  

The PI values employed are KP = 200 and KI = 
400. Figure 9 depicts the PI controller's circuitry 
scheme for obtaining input and output data. This 
process utilizes the 'view log signal' functionality 
accessible in Simulink. 

 

Figure 9. Schematic of the input and output data-taking circuit in the log view signal tool 
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During Simulink execution, the input and output 
data will be observable in the Matlab workspace, as 
depicted in Figure 10. 

 The acquired input and output data manifest as a 
matrix with dimensions of 100001x1. These datasets 
will facilitate the training of the artificial neural 
network (ANN) using the back-propagation 
technique. 

 

 
 

Figure 10. The results of input and output in the 
workspace view 

 
4.2. Selection of Back-Propagation ANN Architecture 
 

Upon acquiring the input and target data intended 
for training, the subsequent stage involves initiating 
the ANN training process utilizing the toolbox tool in 
the Matlab command window. The initial step 
encompasses configuring the data, commencing with 
data validation, and selecting the ANN architecture 
designated for the training regimen. Initially, the data 
is trained using a tool to import the input and target 
data from the workspace into the neural network data 
manager. Following data importation, the subsequent 
action entails configuring a training network, 
offering a range of options. Figure 11 illustrates the 
parameters for training, validation, and testing of the 
data scrutinized in ANN. 

 
 

Figure 11. Validation of configuration parameters and test 
data 

 
In the parameter configuration, training data will 

be utilized to adjust network data during the training 
process, adapting it based on errors encountered. 
Validation assesses the network's generalization 
capacity and ceases the training procedure when 
improvements in generalization halt. Conversely, 
testing does not influence the training process but 
provides an independent evaluation of network 
performance during and post-training.  

 
 

In this instance, 70% of the data is allocated for 
training, yielding 70,001 samples; 15% is reserved 
for validation, yielding 15,000 samples, and another 
15% is designated for testing, yielding 15,000 
samples. This training regimen involves five layers, 
with the network architecture depicted in Figure 12. 

 

 
 

Figure 12. Architecture of ANN 
 

4.3. Training Data for Back-Propagation ANN 
 
The subsequent phase involves network training 

within the neural network data manager window after 
successfully establishing parameter configuration and 
selecting ANN architecture. The training utilizes the 
Levenberg-Marquardt algorithm, with the network's 
results depicted in Figure 13. 

 

 
 

Figure 13. Results of training network on ANN 
 

From the neural network training outcomes, there 
are distinct values for MSE (Mean Squared Error) 
and R. During training, MSE is 8.60278e-2 with an 
R-value of 9.99463e-1. In the validation phase, MSE 
is 8.62876e-2 with an R-value of 9.99451e-1. In the 
testing phase, MSE is 8.52094e-2 with an R-value of 
9.99433e-1. 

 

 
 

Figure 14. Results of MSE performance on ANN 
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Figure 14 displays the outcomes of the ANN 
training network, reflecting the optimal validation 
performance achieved during the network training 
process. These results demonstrate the best validation 
performance of 0.086288 attained at the 998th epoch 
out of 1000. 

 
4.4.  Testing Data for Back-Propagation ANN 

 

Following the training of the back-propagation 
ANN method with the provided training dataset, the 
subsequent phase involves evaluating the 
performance of the trained back-propagation ANN 
against the PID controller. This comparison is 
conducted using the Simulink tool. To facilitate this 
comparison, it is imperative to ensure that the 
setpoints and loads employed exhibit similarities as 
outlined in Table 1 parameters. 

 
Table 1. Parameter of variable speed and load on the motor 

 

Variable Model No. 1 Model No.2 
Speed (rpm) [300, 700, 500] [0, 4, 7] 
Load torque (N/m) [10, 15] [0, 3] 

 
Table 1 presents the speed and load parameters for 

the motor under investigation. Regarding speed, there 
are three transitions: starting from 300 rpm at t = 0, 
rising to 700 rpm at t = 4 seconds, and then 
decreasing to 500 rpm at t = 7 seconds. Similarly, the 
torque load comprises two instances: starting at 10 
Nm at t = 0 and increasing to 15 Nm at t = 3 seconds.  

Figures 13 and 14 depict the outcomes of 
evaluating the DC motor speed control system 
utilizing a one-quadrant DC chopper with both PI 
and ANN controllers.  

These results are illustrated through four 
graphical representations showing motor speed, load 
torque, armature current, and armature voltage 
waveforms. Figures 15 and 16 elaborate on the 
results of testing the DC motor speed control system 
employing a one-quadrant DC Chopper with PI and 
ANN controllers. These results are presented through 
four diagrams depicting waveforms of motor speed, 
load torque, armature current, and armature voltage. 

 

 
 

Figure 15. Results of waveforms in the control using PI 

Figure 15 illustrates the performance of the PI 
controller in managing load and reference speed 
variations, albeit with some motor speed overshoot. 
This suggests a need to fine-tune the PI controller 
parameters to minimize overshoot and achieve 
quicker settling times while maintaining stability. 
The armature current and voltage graphs demonstrate 
the controller's efficacy in regulating motor 
performance. Moreover, the relationship between 
load and electromagnetic torque indicates the 
system's responsiveness to changes in load 
conditions. 

The interplay among motor speed, armature 
current, load torque, electromagnetic torque, and 
armature and source voltages reveals a well-
coordinated control system. The motor speed closely 
tracks the reference, indicating the controller's 
adeptness at achieving and sustaining the desired 
speed amidst setpoint changes. Fluctuations in 
armature current correspond to speed variations, 
necessitating adjustments to ensure adequate torque 
generation. Additionally, the electromagnetic torque 
adapts to load changes, ensuring the motor can 
manage varying loads efficiently and effectively. 
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Furthermore, the applied armature voltage adjusts 
per operational requirements while the source voltage 
remains steady, affirming the control system's 
efficient energy regulation to uphold optimal motor 
performance.  

Overall, the graph depicts a responsive and 
adaptable system with robust energy management 
capabilities capable of meeting dynamic operational 
demands. 

 

 
 

Figure 16. Results of waveforms in the control using ANN 

Based on the data illustrated in Figure 16, it can 
be deduced that employing ANN in the motor control 
system exhibits consistent and efficient performance, 
demonstrating a robust capability to adeptly respond 
to speed and load fluctuations. This adaptability 
holds significance in industrial contexts where swift 
and precise adjustments to varying operational 
conditions are imperative. A comparison between the 
PI controller and ANN reveals that the utilization of 
ANN outperforms the PI controller in the control 
system. 

 

 
 

Figure 17. Results on DC motor speed control system 
using PI 

 
Comparative images depicting the control 

system's performance with PI and ANN can be 
observed in Figures 17 and 18 below for further 
elaboration. These diagrams depict motor speed 
waveforms represented by blue and red colours.  

The blue curve represents the reference speed 
profile, starting at 300 rpm at 0 seconds, increasing 
to 700 rpm at 4 seconds, and decreasing to 500 rpm 
at 7 seconds. 

Both figures juxtapose the waveforms under PI 
and ANN control. Under PI control, fluctuations in 
motor speed surpass the reference speed line, unlike 
under ANN control, which endeavours to align with 
the reference line. The assessment of control system 
trials comparing PID and ANN employs a method of 
analyzing the response of a second-order system.  
 

 
 

Figure 18. Results on DC motor speed control system 
using ANN 

Table 2 delineates the outcomes of the system's 
response to the DC motor speed test under PI and 
ANN control. 
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Table 2. The results of testing system response 
 

Variable 
Control 

Delay 
Time 

Rise 
Time 

Overshoot 
(%) 

Steady 
State 
Error 

PI 0,214 643,66 2,3 % 7 
ANN 0,213 632,11 1,6 % 3 

 
In the system response test results, a comparison 

between motor speed under PI and ANN control 
reveals consistent delay times at 0.214. However, a 
discrepancy arises in the rise time values, with PI 
control registering 643.66 compared to ANN 
control's 632.11, indicating an 11.55 difference. The 
overshoot percentages differ, with PI control at 2.3% 
and ANN control at 1.67%. The steady-state error 
yields a value of 7 for both PI and control, while 
ANN control demonstrates a value of 3. 
 
5. Conclusion 

 
This study involves developing and simulating an 

intelligent control system employing an ANN 
algorithm. The investigation compares the speed test 
outcomes of a single-quadrant DC chopper motor 
using PI and ANN control techniques. Data from the 
PI controller are utilized to train the ANN through 
the back-propagation method. The findings indicate 
that employing LabVIEW facilitates the real-time 
processing of precise system response data. ANN 
control significantly enhances the system response in 
regulating DC motor speed compared to PI control. 
Performance metrics such as delay time, overshoot, 
rise time, and steady-state error demonstrate the 
superiority of ANN control over PI. However, 
optimal performance of ANN requires meticulous 
training, and further research should explore 
additional factors influencing the efficacy of both 
control methods. 
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