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Abstract – This study investigates the relationship 
between EEG and different levels of working memory 
performance in children. A total of two hundred thirty 
subjects have volunteered for the study. Initially, the 
students are required to answer psychometric tests to 
gauge their working memory performance. Based on 
the scores obtained, the students are then segregated in 
high, medium, and low working memory performance 
groups. Resting EEG is recorded from prefrontal 
cortex and pre-processed for noise removal. Synthetic 
EEG is then generated to balance out and enhance the 
number of samples to two hundred for every control 
group. Next, short-time Fourier transform is applied to 
convert the signal to spectrogram. The feature image is 
used to train the VGGNet model. The deep learning 
model has been successfully developed with 100% 
accuracy for training, and 85.8% accuracy for 
validation. These indicate the potential of assessing 
working memory performance alternatively using EEG 
and VGGNet model. 
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1. Introduction

Working memory (WM) refers to capacity for the 
active, top-down mechanism retained in short-term 
memory [1]. This cognitive  function is crucial for 
learning and executing complex tasks [2]. As 
children progress through developmental stages, their 
cognitive processing capacities evolve [3]. This 
phase is marked by knowledge and skills 
enhancement based on their WM capacity. Such 
development is not only crucial for children’s 
academic achievements but also bears significance 
for future profession setting towards adulthood [2]. 

Individuals with high WM often indicate neural 
efficient behavior. This is characterized by their brain 
operating with reduced cortical activation when 
subjected to mental load [4]. These individuals are 
capable of handling and managing higher cognitive 
loads and accomplishing complex tasks with the 
same mental effort, in contrast with those with 
relatively lower WM capacities [5]. Meanwhile, 
individuals with low capacity who are subjected to 
the same cognitive load will require more effort to 
accomplish the task compared to those from with 
high WM capacity. 

Additionally, other studies focusing on 
intelligence and brain behavior encompass the neural 
efficiency hypothesis (NEH) [5]. NEH postulates that 
when performing the same cognitive tasks, those who 
are highly intelligent demonstrate a lower state of 
cortical activation than the relatively less bright 
individuals [6]. Given the seemingly strong 
association between WM and intelligence [5], the 
hypothesis can also be correlated with WM, 
suggesting those with high level of WM capacity will 
also demonstrate efficient brain activation. 

Conventional assessment of WM encompasses a 
diverse range of psychometric tests, each 
meticulously designed and validated to evaluate 
different aspects of WM.  

https://doi.org/10.18421/TEM134-05
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The tests batteries include, but are not limited to, 
digit span tasks, N-back tasks [7], complex span 
tasks, and reading span tasks, verbal and visuospatial 
WM tasks [8]. The task variations are integral 
components of several well-established WM 
assessment batteries which include the Working 
Memory Rating Scale [9], Cogmed Working 
Memory Training [10], Comprehensive Assessment 
Battery for Children-Working Memory [11], 
Wechsler Children’s Intelligence Scale [12], and the 
Automated Working Memory Assessment (AWMA) 
[13]. Each task within these assessment tools is 
uniquely associated with a specific pattern of cortical 
activity which responds to the specific task demands. 

To interpret the brain response to specific task 
demands, a variation of neuroimaging modalities has 
been developed. These include electroencephalogram 
(EEG), magnetoencephalogram (MEG) [14], 
functional magnetic resonance imaging (fMRI) [15], 
and positron emission tomography [16]. EEG is non-
invasive, and the method was selected for this study 
due to its great temporal resolution [17]. This is 
crucial for accurately and precisely identifying 
changes in brain activity. Its preference in research 
settings is also attributed to its cost-effectiveness [18] 
and lower noise levels compared to fMRI. 
Additionally, the operational procedure is 
significantly quieter, more convenient, and exhibits 
greater protocol adaptability compared to fMRI and 
MEG.  

In the past, EEG has been widely employed in 
assistive and healthcare technologies that include 
emotion recognition [19], classifying motor imagery 
EEG [20], predicting human intention-behavior [18], 
and detecting seizures [21]. Spectrogram, which is a 
form of time-frequency information generated 
through Short-Time Fourier Transform (STFT), has 
been widely used for analysis purposes. The feature 
provides a comprehensive visual representation of 
brain activity across time and frequency. 
Transformation of EEG into spectrogram highlights 
various subtle neural patterns, which may not be 
easily apparent, yet can be associated with different 
levels of working memory. The graphical 
representation maintains both the temporal and 
frequency information that are inherent in the EEG. 

Convolutional neural network (CNN) is renowned 
for its ability to learn and identify patterns within an 
image dataset [22]. Hence, spectrograms can 
facilitate CNN in learning the dynamics of brain 
behavior, capturing the varying information over 
time and across different frequencies. Through 
spectrograms, the inherent complexity in the EEG 
becomes more learnable for CNN, which enables the 
model to be more effective in classifying different 
psychometric parameters. 

The approach has been validated through earlier 
studies, where using these image features has led to 
successful classifications in diverse applications. For 
instance, human intention-behavior [18] and emotion 
classification [19] achieved satisfactory accuracies, 
while more excellent results were attained for motor 
imagery classification [20], and seizure detection 
[21]. The experiments were conducted using 
architectures such as GoogleNet, AlexNet, ResNet-
18, multi-scale CNN, and hybrid CNN-support 
vector machines (SVM). 

In the context of WM however, the use of 
spectrogram and CNN is relatively new. Moreover, 
the application of the VGG16 to classify WM levels 
from EEG remains unexplored, despite its 
effectiveness in related areas such as drowsiness 
detection [23]. This indicates an opportunity for 
investigation, given the promising performance of 
VGG16 with spectrogram-transformed EEG. 

In recent studies on EEG and WM, various 
machine learning approaches have been explored. 
Memory activity classification was performed using 
a network constructed on phase-locking values [24], 
and the extracted features were implemented in SVM 
for classification, yielding satisfactory accuracy. 
Another study employed methods such as random 
forest and SVM to classify WM load [25]. Both 
classifiers performed effectively on EEG data with 
the ability to precisely identify workload levels. 
Meanwhile, a separate study focused on classifying 
WM into high and low performance group using 
power ratio features and deep neural network [26]. 
Although promising, the classifier has attained poor 
accuracies. 

Hence, two major objectives have been outlined 
for this study. First, resting EEG will be recorded and 
transformed to spectrogram features. Second, the 
work will train the VGG16 architecture to classify 
them into high, medium, and low WM groups. Single 
EEG channel is implemented for this study. 
Subsequently, this paper is arranged in the following 
structure: 2. Methods, 3. Results and Discussion, and 
4. Conclusion. 

 
2. Methods 
 

The research framework for the study is shown in 
Figure 1. Subjects are screened for eligibility to 
participate in the study. The selected subjects are 
required to have their resting EEG recorded. Then, 
they will undergo WM test and clustered into the 
high, medium, and low performance groups. This is 
followed by EEG pre-processing and conversion of 
the signal into spectrogram features through STFT. 
The training dataset are used to develop the VGG16 
network.  
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To further assess the generalization ability of the 
model, a separate validation set is used to classify the 
unseen samples into the respective WM groups. All 
EEG pre-processing, transformation, and deep 
learning tasks are executed in MATLAB. 

 
 

Figure 1.  General research framework 
 

2.1. Subject Recruitment 
 

A total of two hundred thirty children from states 
of Selangor and Kedah have volunteered for the 
study. They were screened based on a set of inclusion 
and exclusion criteria. Eligible participants are 
children aged 7 to 12 years with good health and 
normal colour vision. Those with learning 
disabilities, have scalp-related skin conditions, or 
currently under prescribed medication are excluded 
from the study.  

All protocol and procedures have been approved 
by the Research Ethics Committee of Universiti 
Teknologi MARA (REC/06/2022 (PG/MR/145)). 

Prior to data acquisition, the overall framework 
and protocol of the study are explained to the parents 
and legal guardians of the students. This ensures that 
they fully comprehend the motivation and objective 
of the study. EEG recording and administration of 
WM test can only commence once consent is 
obtained from the parents or legal guardians. A 
questionnaire is used to acquire demographic 
information of the subjects. 

 
2.2. EEG Acquisition and WM Test 
 

Subjects were asked to be in seated position, 
relaxed, and minimize muscle movements [17]. As 
illustrated in the Figure 2, the placement of 
electrodes on the subject conform to the International 
10-20 system. The rooms are deliberately kept free 
from noise and external disturbances during the 
recording process. With both eyes closed, EEG is 
recorded for approximately 120 seconds at sampling 
frequency of 500 Hz.  

 

 
 

Figure 2.  Electrode placements and channel Fz 
 
Subsequently, they were tasked with completing 

the AWMA inspired visual-spatial memory task, 
with scores ranging from 70 to 130. The task was 
designed to assess the working memory performance 
of children using visual information. The obtained 
scores are used to categorize working memory into 
high, medium, and low performance groups, based 
on mean of 100 and standard deviation of 15 [13]. 

 
2.3. EEG Pre-Processing and Spectrogram 
 

Channel Fz was selected for this study as the 
brain region has been associated with working 
memory [27]. Pre-processing is initially performed 
on the EEG to attenuate noise and minimize baseline 
wander.  
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For this purpose, a high-pass filter with 0.5 Hz 
cutoff frequency was implemented. Amplitudes 
exceeding ±100 μV is assumed as noise from the 
ocular muscles and removed via rejection method 
[17]. 

The EEG is transformed into spectrogram, which 
captures the time-frequency information. As shown 
by (1), smaller overlapping segment of the EEG is 
transformed to frequency domain. Window function 
is used to minimize spectral leakage. The magnitude 
of each frequency is calculated resulting in two-
dimensional (2D) form of the spectrogram [19]. 

 

𝑋(𝑡, 𝑓) = � 𝑥(𝜏)𝑤(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓𝜏
∞

−∞
𝑑𝜏 (1) 

 
The spectrogram, X(t, f), is presented as a function 

of time, t, and frequency, f. The EEG is x(τ), and the 
window function is w(τ – t). The complex 
exponentials form the basis set of functions.  

 
2.4. Synthetic EEG 
 

Creating a synthetic version of the original EEG 
data is necessary to balance the sample sizes among 
the control groups. This is crucial because an uneven 
sample size can hinder the ability of CNN to learn 
effectively. These negatively affects its 
generalization ability [28]. The synthetic EEG, Vsynt, 
is generated using white Gaussian noise, Wnoise. A 10 
dB signal-to-noise ratio (SNR) is selected so that the 
synthetic EEG sufficiently mirrors the characteristic 
of the original signal. 

Averaged power of the original EEG is initially 
used to obtain the power of the signal. At 10 dB, 
noise power is calculated through the SNR 
relationship. The amplification factor, Aattn, is 
obtained through the square root of the noise power. 
As expressed by (2), the noise array, Vnoise, is then 
acquired by multiplying Wnoise, with Aattn. 
Consequently, Vsynt, is acquired by adding Vnoise to 
the original signal, VEEG. This is presented by (3). 

 
𝑉noise = 𝑊noise × 𝐴attn (2) 

 
𝑉synt = 𝑉EEG + 𝑉noise (3) 

 
2.5. VGG16 Network 
 

A CNN is a type of deep learning neural network 
frequently used for analysing visual images. It is 
designed to adaptively learn spatial hierarchies of 
features from input data. The architecture of a CNN 
is tailored to leverage the 2D structure of input 
images. It employs layers of convolutional 
operations, pooling operations, fully connected 
layers, and normalization layers to discern patterns 

within the image [19]. In this study, VGG16 
architecture was selected as it has demonstrated 
highly capable in performing classification tasks 
[29]. 

The VGG16 comprises thirteen convolutional 
layers with three fully connected layers. Transfer 
learning was used to train the network. The 
‘imageDatastore’ function was utilized to automate 
the labelling of spectrograms according to the created 
folder structure, efficiently managing all subfolders 
within the dataset. Subsequently, the dimension of 
spectrograms is resized to 224 x 224 pixels to 
comply with the input requirements of VGG16 
network. This is crucial to ensure compatibility 
between all input images and the neural network 
during training. The dataset is initially randomized. 
80% of the data is used for training. Meanwhile, 
model validation uses the remaining 20%. This 
dataset partitioning is well established and gives the 
opportunity for the network to sufficiently learn from 
the training samples. 

 
2.6. Hyperparameter Settings 
 

A learning optimization approach called Adaptive 
Moment Estimation (Adam) is used in this study. It is 
well known parameters used to update network 
weights iteratively during training. Comparatively, 
Adam optimizer has a fast convergence rate and 
improves generalization ability of the network. 

The maximum number of training epochs was set 
at 100, with minibatch size of 128. These were 
determined through trial-and-error technique that 
balances learning with computational efficiency. This 
setting facilitates more frequent weight updates in the 
model, promoting robust learning. This is influenced 
by a past study where the CNN consistently attained 
accuracies exceeding 90% [30]. 

 

Table 1.  Training parameters 
 

Parameter Specification 
Optimizer Adam 
Minibatch size 128 
Maximum epoch 100 
Initial learning rate 0.0001 
Validation frequency 10 
Dataset randomization Every epoch 

 
The initial learning rate was set at 0.0001 to 

ensure training stability and prevent excessive weight 
adjustments that might cause non-convergence. The 
lower learning rate enables more precise weight 
updates. Validation checks are performed every 10 
iterations to monitor for potential overfitting. To 
promote robust feature learning, the dataset is also 
shuffled at every epoch. Meanwhile, the 
specifications of the workstation used is shown in 
Table 2. 
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Table 2.  Workstation specifications 
 

System Specifications 
Central processing unit Intel Core i7-7700 CPU @ 

3.60GHz 
Random access memory 8 GB 
Graphics processing unit NVIDIA GeForce GTX 

1080Ti 
Operating system Windows 10 64-bit 

 
2.7. Performance Metrics 
 

Model performance during training and validation 
is assessed using the confusion matrix. The method 
demonstrates how accurate each class is predicted. 
Positive samples that have been correctly predicted 
by the model are the true positives (TP). Meanwhile, 
the correctly predicted negative samples are the true 
negatives (TN). Contrariwise, false positives (FP) 
indicate wrongly predicted negative class, while false 
negatives (FN) are wrongly predicted positive class. 
Based on this technique, other metrics such as 
accuracy (Acc), specificity (Sp), and sensitivity (Se) 
has been derived [19]. The parameters are each 
presented by (4), (5), and (6). 

 

Acc =
TP + TN

TP + TN + FP + FN
 (4) 

 

Sp =
TN

TN + FP
 (5) 

 

Se =
TP

TP + FN
 

 
(6) 

 
3. Results and Discussion 

 
The initial results analyse the distribution of WM 

score. This is then followed by pre-processed EEG 
and spectrograms. The discussion ends with the 
performance of VGG16 classification model.  

 
3.1. Analysis of WM Score 
 

The individual scores obtained from the WM test 
were assessed offline. The mean score is 17.07 with 
standard deviation (SD) of ±4.55. Based on the mean 
and SD of the population score, the subjects are 
separated into the three different WM groups. These 
are summarized in Table 3. 

 
Table 3.  WM score and control groups 

 

WM Group Range of Score Subjects 
High - 1 Score > 21.62 33 
Medium - 2 12.52 <= Score <= 21.62 

(mean – SD and mean + SD) 
165 

Low - 3 Score < 12.52 32 

Due to the unequal distribution of subjects among 
the control groups, the use of synthetic EEG is 
necessary for optimum and unbiased classification 
performance.  

 
3.2. Pre-Processed EEG and Spectrogram 
 

The EEG underwent through pre-processing for 
baseline correction and electrooculogram (EOG) 
rejection. A five second sample of the pre-processed 
EEG is shown in Figure 3. The signal is well-
contained within the voltage range of ±100 μV, 
which conforms to the characteristic of a standard 
EEG. No EOG overshoot is observed within this 
signal window. Else, there would be amplitude 
spikes exceeding the voltage range of the EEG. Each 
class has been enhanced with the synthetic version of 
the signal. A sample of the original and synthetic 
EEG is shown in Figure 4. Both signals are 
differentiated using blue and red colour. 

 
Figure 3.  Sample of pre-processed EEG 

 
Figure 4.  Original (blue) and synthetic (red) EEG 
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Generally, both signals show similarity in terms 
of its low frequency variation. However, high 
frequency component indicates higher variations 
from the smaller amplitude spikes. This is generally 
caused by the initial setting of relative low SNR to 
avoid the noise from altering the characteristics of 
original EEG and potentially leading to 
misclassification by the model [28]. Each group is 
enhanced with synthetic EEG until reaching 200 
samples per group. 

All pre-processed and synthetic EEG are 
converted to spectrogram features through STFT. 
Figure 5, 6, and 7 each show the spectrogram 
samples for high, medium, and low WM groups. The 
spectrogram presents the time-frequency information 
of resting state for a duration of ninety seconds. The 
observable range is limited from 0 Hz to 64 Hz 
because the frequency has been down sampled to 128 
Hz. The color map represents the power, ranging 
from 25 dB to 65 dB. 

 
Figure 5.  Sample spectrogram for high WM group 

 
Figure 6.  Sample spectrogram for medium WM group 

 
Figure 7.  Sample spectrogram for low WM group 

 
Despite the device having built-in filter circuitry, 

50 Hz interference from the power line is visible for 
all samples. Visual observation on each spectrogram 
revealed minimal differences between the three 
different WM groups. Occasional activation of the 
brain can be observed through the increased power 
for beta and higher frequency band. 

By limiting to the lower theta range, a more 
defined differences can be observed. Theta power is 
more dominant in the low, followed by medium and 
high WM group. A high theta power indicates a less 
relaxed state as the EEG oscillation in the alpha 
region is relatively weaker. Therefore, these conform 
with the hypothesis that WM performance can be 
associated with intelligence and further have 
common traits as outlined by the NEH. However, the 
observable differences between spectrograms of the 
three WM groups are minimal. Hence, it will be a 
monumental task for the VGG16 architecture to learn 
these minute differences and classify the spectrogram 
feature into high, medium, and low WM group.  

 
3.3.  VGG16 Classification Model 
 

A total of 600 spectrogram images were used to 
develop the classification model. The dataset is split 
in two with 80:20 ratio for model training and 
validation. All spectrograms were resized to fit the 
input of VGG16 network. Generally, the model 
attained acceptable performance with 100% accuracy 
for training and 85.8% for validation. These are 
further elaborated in Table 4. The classification 
model is well-trained, with 100% specificity and 
sensitivity for all WM groups. The real test, however, 
is when the model is tasked with classifying the 
unseen spectrograms. The model has successfully 
identified most feature images for the high and low 
WM group. 
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Table 4.  Training and validation performance 
 

Dataset High Medium Low 
 Sp Se Sp Se Sp Se 
Training 1 1 1 1 1 1 
Validation 1 0.91 0.97 0.78 0.84 0.93 

 
However, sensitivity towards the medium, and 

specificity for the low WM groups are only 
satisfactory. These show that a higher degree of 
misclassification has occurred between the two 
classes than the high WM group. Consequently, a 
higher degree of similarity is demonstrated by the 
spectrograms in the medium and low WM group. 

 
4. Conclusion 

 
Generally, the two objectives outlined for the 

study have successfully been achieved. Initially, 
samples of EEG from the children have been 
acquired. They were grouped into high, medium, and 
low performance groups based on the scores from 
WM test. The resting EEG is converted into 
spectrograms through STFT. Similar procedure is 
performed on the synthetic EEG. The pattern of the 
spectrogram is generally complex and is difficult to 
visually discern between the WM groups. By 
focusing on the theta frequency range, minor 
differences can still be observed. 

The spectrograms generated from the original and 
synthetic EEG were then successfully used to train 
the VGG16 classification model. The architecture 
was able to learn the spectrogram dataset, yielding 
100% classification accuracy. When tested using 
unseen samples, the model was only able to yield 
satisfactory accuracy of 85.8%. Further investigation 
through the sensitivity and specificity measures 
indicated that the spectrograms from medium and low 
performance have higher level of feature similarity 
than the high WM group. 

Hence, the satisfactory results using spectrogram 
features and VGG16 highlights their potential use for 
classifying different levels of WM based on resting 
EEG. However, the validity of the work is only valid 
for children between the age range of 7 to 12 years 
old. Nevertheless, the results will be beneficial for 
teachers to adopt training strategies for improving 
WM in the affected students. 
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