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Abstract – Research on the automated extraction of 
essential data from an electrocardiography (ECG) 
recording has been a significant topic for a long time. 
The main focus of digital processing processes is to 
measure fiducial points that determine the beginning 
and end of the P, QRS, and T waves based on their 
waveform properties. The presence of unavoidable 
noise during ECG data collection and inherent 
physiological differences among individuals make it 
challenging to accurately identify these reference 
points, resulting in suboptimal performance. This is 
done through several primary stages that rely on the 
idea of preliminary processing of the ECG electrical 
signal through a set of steps (preparing raw data and 
converting them into files that are read and then 
processed by removing empty data and unifying the 
width of the signal at a length of 250 in order to 
remove noise accurately, and then performing the 
process of identifying the QRS in the first place and P-
T implicitly, and then the task stage is determining the 
required peak and making a cut based on it. The U-Net 
pre-trained model is used for deep learning. It takes an 
ECG signal with a customisable sampling rate as input 
and generates a list of the beginning and ending points 
of P and T waves, as well as QRS complexes, as output.  
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The distinguishing features of our segmentation 
method are its high speed, minimal parameter 
requirements, and strong generalization capabilities, 
which are used to create data that can be used in 
diagnosing diseases or biometric systems. 
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1. Introduction

An electrocardiogram (ECG) records heart 
electrical activity. These recordings are made with 
body electrodes [1]. Since biometric systems use this 
ECG to identify persons, it is considered a vital 
diagnostic tool for heart issues and disease. Modern 
research uses biometric methods to identify people. 
Researchers have been interested in automatic 
electrocardiogram (ECG) signal processing and have 
applied their findings to medical and security [2]. 
ECG analysis examines QRS complex P and T 
waves, including their forms, sizes, relative locations, 
and other properties. When segmenting or identifying 
an ECG signal, finding the start and end points of 
QRS complexes and P and T waves is crucial since it 
reduces data input and dependence on sections of the 
ECG, like clinicians do when reading a paper ECG 
[3]. Due to many reasons, automating reliable ECG 
segmentation is difficult. Electrode and muscle 
activity can obscure the P wave, which is low in 
magnitude [4]. The biphasic structure of P and T 
waves makes onsets and offsets difficult to 
determine. Abnormal cardiac cycles may lack a P 
wave. QRS complex identification was assessed on 
ECG [5]. From a medical perspective, the P wave, 
QRS complex, and T wave are the fundamental 
elements of the ECG signal. The provided data 
encompasses the measurements of the PR and QT 
intervals, together with the PR and ST segments [6]. 
Nevertheless, the process of identifying and 
distinguishing ECG segments becomes complex due 
to the diverse physiology of the reference sites, 
largely resulting from cardiac diseases [7].  
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These problems must be handled. The isoelectric 
line represents the baseline of the ECG signal, 
signifying the lack of electrical activity in the heart. 
Noise may cause interference or distortion in the 
ECG signal  [8]. The process of segmenting an 
electrocardiogram (ECG) signal involves identifying 
the specific waves, segments, and intervals within the 
signal and then comparing them to established 
patterns based on their temporal and formal 
properties [9]. Also, the second purpose lies in 
scientifically preparing data and cutting it without 
loss to enter it into the neural network and prepare 
the data, whether for a medical or biometric system 
[10]. In this research paper, the importance of the 
signal segmentation process is highlighted, and a 
method with a new idea is proposed with a short 
segmentation time based on deep learning in order to 
prepare the data, whether for a medical situation or 
the subject of biometric systems so that the problem 
of the entrance to the neural network that is limited to 
one size is solved. 

 
2. ECG Domain  

 
The heart comprises specialised cells with 

inherent excitability, which generate electrical 

impulses that initiate the mechanical contraction of 
the muscle fibres [11]. An electrocardiogram (ECG) 
measures one's electrical activity over time. An 
electrocardiogram (ECG) is typically obtained using 
an array of electrical leads on the chest [12]. The 
process of placing electrodes on the human chest is 
not quite practical from the point of view of 
biometrics due to the mechanism of their installation 
and placement of people, and as a result other 
methods have recently been introduced, such as the 
method in which a single-lead setup is proposed to 
obtain an ECG signal at the fingers using Ag/Ag 
electrodes. AgCl without gel or through a smart 
watch or all of these modern and advanced methods 
that rely on the idea of small-sized devices that are 
efficient in output [13]. Therefore, the ECG has 
many aspects, including medical, biometric, and 
research aspects for evaluating algorithms, all of 
which lead to a basic idea: preparing the data before 
using the algorithm [14]. Figure 1 illustrates the 
different devices that can obtain the signal from 
humans where (a) ECG biometric and can used to 
classify diseases if diagnosed by doctor, (b) for heart 
diseases diagnosis and biometric (evolution the 
algorithm). 

 
Figure 1. ECG signal model 

 
The electrical signal of the heart is shown in 

Figure 2. with the best feature that can be obtained 
from one signal. 

 
 

Figure 2. Electrical signal of the heart[15] 

Electrocardiograms measure the potential 
difference between two locations and define 
electrocardiogram (ECG) traces as a visual depiction 
of electrical potential difference changes. Each wave 
in an electrocardiogram (ECG) trace represents a 
phase of the heart's electrical cycle. The P, Q, R, S, 
and T waveforms are characteristic of 
electrocardiogram (ECG) tracings. P waves indicate 
the observed electrical activity in the atria of the 
heart [16]. The QRS complex signifies the electrical 
activity occurring in the ventricles, which are the 
lowest chambers of the heart.  
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Ventricular repolarization is shown by the T 
wave. The PR interval represents the duration 
between the P wave and the QRS complex, 
indicating the time required for the electrical impulse 
to propagate from the atria to the ventricles. The QT 
interval is defined as the duration between the QRS 
complex and the T wave. The QT interval is the time 
needed for the ventricle to undergo contraction and 
repolarization. At this step, the use of a specific filter 
is intended to improve the quality of the signal by 
reducing distortion and limiting the loss of important 
information [17]. 

3. ECG Segmentation 
 
Accurate automated detection of fiducial points in 

an electrocardiogram (ECG) is crucial for the 
automated analysis of this captured electrical signal. 
There are several well-established techniques in the 
literature to segment ECG data automatically and 
manually, and it is considered one of the complicated 
topics in the signal processing part [18]. These 
algorithms rely on distinct methods and are 
frequently evaluated using diverse datasets and 
protocols, which complicates the task of evaluating 
their performance due to the difficulty of the data 

available to researchers [19]. Segmenting an 
electrocardiogram (ECG) automatically is a huge 
challenge for researchers due to many ideas, but the 
basis must be purely medical according to the 
standards recommended by doctors. Because medical 
devices have different versions and different 
generations play an essential role, this phenomenon 
can be explained through various forms. Which 
appear in the QRS complex, decreased P wave size, 
and smooth transitions that occur at the beginning 
and end of the T wave [20]. Furthermore, the lack of 
a universally acknowledged criterion for accurately 
establishing the exact positioning of fiducial points 
adds an extra level of intricacy to this undertaking 
[21]. There are several techniques documented in the 
scientific literature that can be used to automatically 
segment ECG data into segments. The majority of 
solutions focus on defining a restricted set of fiducial 
points within an electrocardiogram (ECG). 
Implementing a standardized approach to identify all 
fiducial sites may present difficulties due to the 
distinct features of ECG waves, including their 
shape, frequency, magnitude, and duration [22]. In 
Figure 3 an example of a signal peak that can be 
segmented based on the feature can be shown. 

 
Figure 3. Peak example of signal 

 
4. Related work  

 
There are many studies on ECG signal 

segmentation; the following studies are related to 
segmentation based on the same dataset. 

 Study [23] contains a core paper for a dataset 
(Lobachevsky University Database (LUDB))  that 
proposed steps in ECG signal segmentation, A 
comprehensive tool for verifying ECG delineation 
approaches that exceeds the capabilities of existing 
public datasets in some ways. The LUDB dataset 

comprises two hundred 10-second 12-lead 
electrocardiogram (ECG) recordings acquired from 
various sources. These topics in the dataset show a 
variety of signal shapes. For each recording, 
cardiologists annotate the boundaries and pinnacles 
of QRS complexes, P waves, and T waves by hand. 
Each individual lead is annotated. Furthermore, every 
record is thoroughly categorised to identify any 
anomalies. The present case study examines the 
integration of the widely used ecg-kit application 
with the recently developed wavelet-based approach.  
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The purpose of this paper is to illustrate the 
benefits of analysing multi-lead ECG data. LUDB 
broadens the assortment of publicly accessible 
datasets that are utilised in the development and 
validation of sophisticated electrocardiogram (ECG) 
analysis techniques, encompassing cutting-edge 
approaches that rely on deep-learning neural 
networks. Studies suggest that delineation tools may 
exhibit variations in performance when used to 
diverse datasets. The probable cause for the many 
instrumental origins of ECG is its limited size. The 
divergence in expert viewpoints about demarcation 
and identification may have a substantial impact on 
the verification and practical application. 
Nevertheless, there is a lack of evidence available to 
evaluate and resolve this matter. Moving forward, the 
primary focus of quality assurance for demarcation 
algorithms will transition from attaining optimal 
performance for a specific case to guaranteeing 
consistent and dependable performance across 
numerous datasets. Authors of study [24] suggest an 
approach for segmenting electrocardiogram (ECG) 
signals into sections using a fully convolutional 
neural network, akin to UNet. The programme 
accepts an ECG signal with a fluctuating sampling 
rate as input and produces a list of the starting and 
ending positions of P and T waves, as well as QRS 
complexes, as output. Our segmentation approach 
stands out for its rapidity, minimal parameter count, 
and strong generalisation capabilities. This device 
possesses the capability to adapt to different 
sampling rates and is compatible with a diverse range 
of ECG monitors. The proposed technique surpasses 
previous state-of-the-art segmentation algorithms in 
terms of quality. Study [25] presents a new method 
for precisely locating the QRS complex and T wave 
in multi-lead ECG data. This technique uses a U-Net 
framework with convolutional neural networks, long 
short-term memory, and ensemble learning. The 
model used a multi-lead ECG to extract robust 
temporal correlation and exact morphological 
features during training. The model assigned 
likelihood scores to each data point. Dynamic 
threshold adaptive adjustment was used to identify 
QRS complexes and T waves during decision-
making. Electrophysiological knowledge (EK) was 
used to assess and aggregate lead data, minimising 
missed and inaccurate detections.  

The deep learning and EK approach was verified 
using three open databases. Experimental results 
showed that the proposed method outperformed 
state-of-the-art methods. The precise localization of 
specific spots in wearable ECG readings constituted 
a hurdle in the proposed system, primarily due to 
significant noise levels [12]. We developed the 
ECG_SCRNet, a site regression network that 
incorporates sequential constraints to accurately 
detect the distinctive spots of the wearable ECG, 
considering both the temporal sequence of 
waveforms and any missing waveforms. A 
classification header has been included to ascertain 
the presence of a missing P wave or T wave. This 
architectural design integrates the chronological 
order of events, the patterns of human behaviour, and 
the geological knowledge to improve the accuracy of 
identifying significant locations in the network. The 
performance of the ECG_SCRNet model was 
evaluated using the LUDB dataset. Deep learning 
surpasses traditional algorithms in supervised tasks 
when there is a substantial quantity of training data 
accessible. Accurately identifying P, QRS, and T 
waves presents a difficulty in the interpretation of 
ECG waveforms. This paper introduces an 
innovative method that combines deep learning and 
sequential constraint regression to precisely identify 
the position of three waveforms. After undergoing 
training, the system effectively identified the 
locations of waves by integrating waveform 
categorization with forecasts of the initial and final 
points. 

 
5. Proposed System 

 
The electrical signal to the heart is an essential 

topic for researchers, especially how to segment the 
signal. In this approach, a model dedicated to 
segmentation is proposed, but in a way that has a 
similar idea by performing processing operations to 
format the data, whether it is used in biometric 
systems, in diagnosing heart disease, or in testing the 
efficiency of the algorithm, where the basic idea is to 
determine the number of QRS pulses in a basic form 
and P-T in a basic form. Second, the desired number 
is chosen and then chopped based on deep learning. 
Figure 4 displays the suggested framework of the 
approach. 
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Figure 4. proposed outline of the approach

5.1. Dataset Used 
 

The database for electrocardiography at 
Lobachevsky University (LUDB) [23] includes 
electrocardiogram (ECG) data exhibiting distinct and 
well-defined boundaries and peaks for the P, T, and 
QRS complexes. The collection contains 200 10-
second 12-lead ECG signal recordings, each 
displaying distinct morphologies. In the years 2017-
2018, Healthy People collaborated with Nizhny 
Novgorod City Hospital No. There were 5 patients 
who submitted electrocardiograms (ECGs). Several 
individuals exhibited pacemakers and other 
cardiovascular conditions. Cardiologists carefully 
marked all 200 data for P, T, and QRS complexes. 
Each record corresponds to a diagnosis. The database 
has the capability to instruct and assess ECG 
delineation methods for educational purposes. This 
entails the automated identification of the borders 
and peaks of P, T, and QRS complexes. Accurate and 
detailed databases including complicated and wave 
data are required to verify the accuracy of ECG 
delineation methods. The collections that are now 
accessible are the MIT-BIH Arrhythmia Database, 
European ST-T Database, and QT Database. Please 
note that their annotation is not fully comprehensive. 
The MIT-BIH Arrhythmia Database and European 
ST-T Database annotate QRS complexes.  

 
 
 
 
 
 

While a significant number of complexes lack 
labels, the QT database has annotations specifically 
for P, QRS, and T waves. The objective behind the 
development of the Lobachevsky University (LUDB) 
electrocardiogram (ECG) database was to rectify 
these issues (Figure 5).  

The frequency at which articles utilised the given 
dataset from 2021 to 2023 is denoted. 

 

 
Figure 5. The LUDB dataset was used by the 

researcher 
 

The database comprises 200 ECG signal records 
lasting 10 seconds and 12 leads. These records were 
gathered between 2017 and 2018. The total number 
of annotated waves is 58,429, which consists of 
16,797 P waves, 21,966 QRS complexes, and 19,666 
T waves. The age of the participants spanned from 11 
to over 89 years, with a mean age of 52. The gender 
breakdown consisted of 85 women and 115 males. 
Table 1 summarises the details of the dataset used. 
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Table 1. number of records with specified heart rate types 
in the dataset 
 

Rhythms Number of ECGs 
 Sinus rhythm 143 
 Sinus tachycardia 4 
 Sinus bradycardia 25 
 Sinus arrhythmia 8 
 Irregular sinus 
rhythm 2 

null 

 Abnormal rhythm 19 
 
Based on Table 1, note that the data is collected 

excellently, as it contains many cases, which helps 
detect and determine QRS due to the different types 
of signals. 

 
5.2. Signal Processing 

 
In order to deal with data of this type, the files are 

converted from the folder in which they are located 
to files with a CSV extension. This step is essential 
to prepare the data, as after the conversion, the empty 
fields that indicate an electrical signal for a person 
but do not contain information are eliminated. This is 
a step (remove messing data), which was referred to 
in the table, represents the (irregular sinus rhythm 2) 
data, which was empty. Thus, move to a critical 
stage, the work of (resampling the signal), where the 
idea or benefit is to slow down the signal for a more 
transparent review of the pulses. Peak, where this 
percentage (250) was adopted based on experience 
for all 12 leads, as it was chosen as an intermediary 
between them because the goal is to work on all leads 
and the original percentage (250), and Figures (6,7,8, 
and 9) show the difference between the original 
signal and the signal that was resampled. 
 

 

 
 

 
 
Figure 6. Before and after signal resampling (example 

one) 
 

 
 
 

 
 
 

 
 
Figure 7. Before and after signal resampling (example 

two)  
 

Based on the figures above, resampling an ECG 
signal involves altering the sampling rate, which 
refers to the frequency at which the signal is sampled 
per unit of time. The proposed approach ensures 
signal compatibility with segmentation by enhancing 
peak number clarity. This can be achieved for several 
reasons: to minimize the data that needs to be stored 
or transmitted. Resampling the ECG signals at a 
lower frequency can effectively minimize the size of 
the enormous data files used in the suggested 
approach. This is particularly significant for 
applications with constraints on storage capacity or 
bandwidth. In order to enhance the precision of ECG 
analysis methods utilized for QRS detection, it is 
advantageous to employ signals with a specific 
sampling rate. This step is done by using sample 
code in Python (resampled_ecg = 
signal.resample(ecg_signal, num). The last step in 
the ECG signal's processing stage is removing the 
noise in the signal, as the following figure shows the 
difference between before and after removal. 

 

 

 
 
 

 
Figure 8. Before and after removing noise in signal 

ECG with normalization (example one) 
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Figure 9. Before and after removing noise in signal 

ECG with normalization (example Two) 
 
The proposed approach concluded that the LUDB 

data set of ECG signals contains different types of 
noise and is therefore considered one of the data sets 
that represent a challenge for researchers. The 
following is a breakdown of the prevailing types of 
noise: 

• Baseline wandering: This slow, low-
frequency drift of the baseline can be caused 
by breathing, electrode movement, and body 
position changes. 

• Power line interference: This 50/60 Hz buzz 
originates from electrical equipment and can 
be picked up by ECG electrodes. 

• Muscle artefact: This high-frequency noise 
arises from muscle contraction and can 
obscure basic ECG features such as QRS 
complexes. 

• Electrode artefact: This noise is caused by 
poor electrode contact, movement, or 
sweating and can appear as sharp spikes or 
base shifts. 

• Electromagnetic interference (EMI): This 
noise can be generated by nearby electronic 
devices and can appear as random spikes or 
bursts of high-frequency activity. 

 
The suggested technique clearly demonstrates the 

impact of noise, namely muscle artefact, on the 
signal, as seen in the aforementioned pictures 
(examples one and two). A high-pass filter was 
employed to eliminate the noise that influenced the 
peak determination. This filter operates by allowing 
lower-frequency signals to pass through while 
blocking any frequencies above a specified threshold, 
typically set at 150 Hz. This threshold is chosen 
because the clinically significant information in the 
ECG is found below this frequency.  

 
 
 

Nevertheless, if there is noise present in the 
electrocardiogram (ECG) frequency range that 
originates from muscle interference or the 
surrounding environment, it is possible to adjust the 
cutoff frequency to reduce its impact. This procedure 
was performed on a 12-lead dataset and successfully 
processed the data to enable the detection, 
identification, and selection of the number of peaks 
to be segmented. 

 
5.3.  Extraction and Selection of the Number of Peaks 

 
The proposed approach used three main functions 

to find (QRS-T-R) and is summarized in Table 2. 
 

Table 2. Primary function to find (QRS-T-R) in the 
proposed approach 

 (ecg_delineate()) This system is specifically 
designed to identify and analyse 
peaks in order to accurately 
define the QRS complex, which 
represents the many waves of 
the heart's cycles. An ordinary 
electrocardiogram (ECG) 
heartbeat comprises a P wave, a 
QRS complex, and a T wave. 
The P wave signifies the 
propagation of depolarization 
from the SA-node across the 
atria. The QRS complex 
represents the rapid 
depolarization of both the right 
and left ventricles. Due to the 
ventricles being the heart's 
greatest component in terms of 
mass, the amplitude of the QRS 
complex is often much greater 
than that of the P-wave. The T 
wave signifies the process of 
ventricular repolarization in the 
heart's ventricles. At times, a U 
wave may be seen subsequent 
to the T wave. The U wave is 
thought to be associated with 
the latter stages of ventricular 
repolarization. 

ecg_findpeaks()) This is the underlying function 
used by ecg_peaks() to detect 
R-peaks in an ECG signal using 
various techniques. Utilise the 
main function and refer to its 
documentation for specific 
information. 

(ecg_peaks()) Detect T-peaks in an 
electrocardiogram (ECG) signal 
with the designated 
methodology. 
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5.4. ECG Segmentation by U-Net (Neural Network 
Architecture) 
 

The neural network design of the suggested 
technique has resemblance to that of U-Net. A single 
lead's electrocardiogram (ECG) signal length, 
represented as (l), serves as the neural network's 
vector input. The neural network is supplied with 
each lead independently. The output is four litres. 
The neural network's confidence in classifying the 
current signal value as belonging to segments P, 
QRS, T, or none of them is represented by the four 
scores that each column of the output matrix 
contains. The layers that make up the neural network 
being discussed are: (i): Each of the four blocks 
comprises two convolutional layers that are 
normalised in batches and employ the ReLU 
activation function. The units are sequentially 
coupled through the utilisation of MaxPooling layers; 
(ii) The output from the preceding layer is sent via a 
MaxPooling layer and used as input before another 
block that consists of two convolutional layers with 
batch normalisation and the Rectified Linear Unit 
(ReLU) activation function; (iii) The merging of pre- 
and post-layer outputs is accomplished by means of 
deconvolution and zero padding layers. Then, a block 
with two convolutional layers that use batch 
normalisation and the ReLU activation function takes 
the output as input. This follows a series of 
deconvolution and zero padding layers applied to the 
prior layer's output. Each of the four blocks takes the 
previously specified output and uses it to train two 
convolutional layers using batch normalisation and 
the Relu activation function. At each level, the output 
is combined with the output from the corresponding 
layers in reverse order. The last step is to forward the 
output of one convolutional layer to the next. With 
the kernel size set to nine, each convolutional layer 
receives a four-padding. The kernel size, stride, and 
padding are set to 8, 2, and 3 for each deconvolution 
layer, respectively. The kernel size for the last 
convolutional layer is defined as 1. Plainly 
understood the suggested network differs 
significantly from the traditional UNet design in that 
it uses 1D convolutions instead of 2D ones. The 
rationale for this decision was that the input data was 
imported from a CSV file, which led to a one-
dimensional reduction in the matrix. Figure 10 
illustrates the neural network architecture 
implemented in the proposed methodologies. 

 
Figure 10. Neural network architecture in proposed 

approaches 

Table 3 summarises the layer used in the 
proposed approaches. 

 
Table 3. Summarized the layer used in the proposed 
approaches 

Layer  Description  
Conv Convolutional layer. A 

convolutional layer serves as the 
primary building block of a 
convolutional neural network 
(CNN). The system comprises a set 
of filters (kernels) that will have 
their configurations learned 
throughout the training process. 

Batchnorm  Batch normalisation, sometimes 
referred to as batch norm, improves 
the efficiency and robustness of 
training artificial neural networks. 
This is accomplished by 
standardising the inputs of the layers 
in the network via the processes of 
re-centering and re-scaling. 

relu ReLU is an acronym for rectified 
linear activation unit and is regarded 
as a significant breakthrough in the 
deep learning revolution. The 
activation function is simple and 
superior to previous alternatives like 
sigmoid or tanh. 

Max pool The max pooling layer is an 
essential convolutional neural 
network architecture element. It aids 
in extracting significant features 
from the input while lowering the 
data's dimensions. 

Zero 
padding  

The convolution process is 
executed on the input feature map 
that has been padded. Zero-padding 
is the most often used padding 
technique, where zeros are added to 
the edges of the input feature map. 
This technique can enhance the 
model's performance by mitigating 
information loss at the boundaries of 
the input feature map. 
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The following Figures illustrate the results of 
these three functions that can work to extract and 
select the number of peaks and segmentation signals. 

 
 
 

 
 

Figure 11. Detection and segmentation (P) 
 
 

 

 

 
 

Figure 12. Detection and segmentation (Q-R-S) 

 
Figure 13: Detection and segmentation (T) 

 
Based on the figures above, notice that the 

process of detection and segmentation was presented 
in a manner different from the research,  
→ Figure 13: Represented the detection and 

segmentation of the (P wave), where the blue 
points represent the (P-offset) measure, the 
orange points represent the (P-onset), and the 
points are combined because they represent more 
than one signal that was taken.   

→ Figure 14: The first signal represents the q wave, 
meaning the blue dots represent (Q (peak) in the 
ECG. The second signal represents the blue dots 
(R-onset), the orange dots represent (R-offset), 
and the last signal in Figure 14 represents the  
 
 

(s wave), where the blue dots represent the peak 
wave (s). The points are combined because they 
represent more than one signal that was taken.   

→  Figure 15: Represented T wave, where the group 
of blue points will represent offset-T and the 
group of orange points will represent onset-T. 
This is the final stage through which the signal is 
segmented after the waves are identified as 
explained. Here the idea is that by identifying 
and detecting all these waves there is a more 
accurate segmentation. This step is the output of 
data that is processed, prepared, and segmented 
by a neural network U-NET that leads to outputs 
that can be entered. To the neural network 
without loss due to its large size. The points are 
combined because they represent more than one 
signal that was taken.   

→  
6. Evolution the Results  

 
The assessment of algorithm quality is conducted 

in accordance with the approach outlined by the 
Association for Medical Instrumentation guidelines. 
Accuracy in onset or offset detection is determined 
by whether the deviation of the detected values from 
the doctor annotations does not exceed a tolerance of 
150 ms in absolute magnitude. A true positive (TP) 
outcome occurs when an algorithm accurately detects 
an important point, such as the beginning or end of 
one of the P, QRS, or T segments. The algorithm 
calculates the time difference (error) between the 
automatically detected position and the manually 
given spot. An I-type error, also known as a false 
positive (FP), occurs when there is no statistically 
significant point within the tolerance range of the 
identified significant point in the test sample. When 
the algorithm is unable to detect a significant point, it 
constitutes an error of type II, more precisely a false 
negative (FN). The subsequent quality indicators 
[26]: 

 

→ The average error is denoted as "m". 
→ The standard deviation σ represents the 

variability of the mean error. 
→  Recall. 
→  recall= TP/(TP + FN). 
→  (TP + FP) divided by positive predictive value 

(PPV) equals precision (PP). The total number 
of correct solutions classified as type I and type 
II errors are denoted as TP, FP, and FN, 
respectively. 

→  F1-measure: F1 = 2 Se · PPV Se + PPV 
Table 4 below illustrates the result of 12-lead in 

proposed approaches.  
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Table 4. Result of 12-lead in proposed approaches 
 

No.lead  Scale  P onset P 
offset 

QRS 
onset 

QRS 
offset 

T onset T offset 

lead I RE (%)  
PPV 

(%)  
F1 (%)  

97.38 
95.53 
96.47 

97.38 
95.53 
96.47 

97.38 
 95.53 
96.47 

97.38  
95.53 
 96.47 

97.38 
95.53 
96.47 

97.38  
95.53 
96.47 

Lead II RE (%) 
 PPV 

(%)  
F1 (%)  

93.66 
94.56 
93.30 

93.80 
92.66 
92.88 

96.90 
 97.99 
97.98 

98.99  
96.80 
 95.97 

96.22 
94.44 
96.49 

92.23 
92.56 
93.65 

Lead III RE (%) 
 PPV 

(%) 
 F1 (%)  

96.66 
97.77 
94.88 

93.38 
94.43 
94.67 

91.68 
 95.83 
96.97 

97.98  
99.93 
 99.97 

99.88 
97.83 
98.87 

94.78  
95.63 
97.57 

Lead 
aVF 

RE (%) 
 PPV 

(%)  
F1 (%) 

94.28 
96.33 
95.47 

94.48 
95.43 
97.57 

97.68 
 94.73 
95.77 

98.98  
98.93 
 98.97 

99.78 
99.73 
99.77 

98.18  
98.13 
91.17 

Lead 
aVR 

RE (%)  
PPV 

(%) 
 F1 (%) 

91.48 
94.43 
92.87 

95.18 
96.23 
97.27 

92.28 
 93.53 
94.57 

97.58  
95.53 
 91.55 

89.22 
91.33 
92.43 

91.99  
92.91 
91.65 

Lead 
aVL 

RE (%)  
PPV 

(%)  
F1 (%) 

95.77 
98.59 
95.49 

97.58 
96.53 
99.97 

97.98 
 99.93 
99.97 

94.14  
91.15 
 96.20 

98.22 
95.32 
97.31 

99.32  
99.33 
95.55 

Lead V2 RE (%) 
 PPV 

(%) 
 F1 (%) 

97.44 
99.53 
91.47 

98.55 
95.59 
96.77 

98.71 
 94.72 
98.73 

99.80 
99.81 
 98.82 

94.77 
96.53 
96.88 

91.77 
91.66 
94.49 

Lead V3 RE (%)  
PPV 

(%) 
 F1 (%) 

95.39 
96.54 
93.49 

97.34 
97.22 
95.32 

99.21 
 97.26 
99.45 

97.77 
95.66 
 98.68 

96.37 
96.59 
96.66 

98.44 
98.43 
99.47 

Lead V4 RE (%) 
 PPV 

(%) 
 F1 (%) 

98.23 
98.44 
91.78 

95.49 
91.53 
92.64 

98.88 
 95.86 
98.83 

99.82 
94.82 
 96.83 

95.21 
91.56 
91.49 

91.98 
91.89 
93.96 

Lead V5 RE (%) 
 PPV 

(%)  
F1 (%)  

94.55 
95.59 
93.86 

92.78 
96.68 
98.69 

99.41 
 96.42 
95.56 

98.56 
98.59 
 98.61 

91.80 
93.66 
91.59 

99.78 
96.74 
97.70 

Lead V6 RE (%)  
PPV 

(%) 
 F1 (%) 

96.80 
99.81 
98.75 

94.67 
93.75 
97.76 

94.45 
 97.78 
98.79 

93.99 
93.96 
 94.91 

98.94 
94.94 
91.97 

99.88 
94.81 
91.84 
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Figure 14. Summary of the result of QRST by using the recall scale 

 

Figure 15. Summary of the result of QRST by using the F1 scale 
 

Figure 16. Summarizes the result of QRST by using the PPV scale 
 

7. Conclusion  
 
An electrocardiogram (ECG) is a straightforward 

and non-invasive diagnostic procedure that captures 
the heart's electrical activity, enabling the 
identification of disorders or the disclosure of 
individuals' identities. It serves several purposes in 
the medical domain, particularly in biometric 
systems.  

This paper presents a method for preparing data 
for two purposes: segmenting the electrical signal of 
the electrocardiogram in a scientific manner and 
enabling researchers to input it into the neural 
network. This is necessary because this type of data 
is extremely large and cannot be accommodated 
directly as input to the neural network. The proposed 
approach has several stages.  

 

85
90
95

100
105

97.38 98.99 97.98 98.98 97.58 94.14 99.8 97.77 99.82 98.56 93.99

97.38 96.9 91.68 97.68 92.28 97.98 98.71 99.21 98.88 99.41 94.45

lead I Lead II Lead III Lead aVF Lead aVR Lead aVL Lead V2 Lead V3 Lead V4 Lead V5 Lead V6

QRS (onset &offset) by using recall  

QRS onset QRS offset
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100
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96.47 95.97 99.97 98.97 91.55 96.2 98.82 98.68 96.83 98.61 94.91

96.47 97.98 96.97 95.77 94.57 99.97 98.73 99.45 98.83 95.56 98.79

lead I Lead II Lead III Lead aVF Lead aVR Lead aVL Lead V2 Lead V3 Lead V4 Lead V5 Lead V6

QRS (onset &offset) by using F1  

QRS onset QRS offset

86
88
90
92
94
96
98

100
102

95.53 96.8 99.93 98.93 95.53 91.15 99.81 95.66 94.82 98.59 93.96

95.53 97.99 95.83 95.77 93.53 99.93 94.72 97.26 95.86 96.42 97.78

lead I Lead II Lead III Lead aVF Lead aVR Lead aVL Lead V2 Lead V3 Lead V4 Lead V5 Lead V6

QRS (onset &offset) by using PPV  

QRS onset QRS offset
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The first stage is the data processing process, 
which takes the form of steps, including converting 
the data file to a CSV extension, through which one 
can perform (removing empty data), then resampling 
the signals, and as a final stage, removing the noise 
in these signals. These steps are considered an 
essential stage in the proposed approach. Through it, 
signals can be obtained, and the peak can be 
identified and extracted. The idea was to interrupt all 
of the p-qrs-t in the 12-lead, and as a result of this 
second stage, the segmentation is done through a 
neural network built in a way similar to U-net. The 
inlet and outlet sizes were equal, and the training 
depth with the least layers was based on experience. 
In future work, the approach will be developed by 
applying it to any data type taken from a 12-lead 
device and reviewing the results with the possibility 
of using other neural layers of the network. 
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