Vol.13, No.3, August 2024.                                                                                                                                                                               ISSN: 2217-8309

                                                                                                                                                                                                                        eISSN: 2217-8333

 

TEM Journal

 

TECHNOLOGY, EDUCATION, MANAGEMENT, INFORMATICS

Association for Information Communication Technology Education and Science


Preparing the Electrical Signal Data of the Heart by Performing Segmentation Based on the Neural Network U-Net

 

Qaswaa Khaled Abood, Ruaa Sadoon Salman

 

© 2024 Ben Rahman, published by UIKTEN. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. (CC BY-NC-ND 4.0)

 

Citation Information: TEM Journal. Volume 13, Issue 3, Pages 1858-1870, ISSN 2217-8309, DOI: 10.18421/TEM133-14, August 2024.

 

Received: 06 February 2024.

Revised:   12 June 2024.
Accepted: 19 June 2024.
Published: 27 August 2024.

 

Abstract:

 

Research on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files that are read and then processed by removing empty data and unifying the width of the signal at a length of 250 in order to remove noise accurately, and then performing the process of identifying the QRS in the first place and P-T implicitly, and then the task stage is determining the required peak and making a cut based on it. The U-Net pre-trained model is used for deep learning. It takes an ECG signal with a customisable sampling rate as input and generates a list of the beginning and ending points of P and T waves, as well as QRS complexes, as output. The distinguishing features of our segmentation method are its high speed, minimal parameter requirements, and strong generalization capabilities, which are used to create data that can be used in diagnosing diseases or biometric systems.

 

Keywords – Electrocardiography, signal, noise, extracting, QRS, peak, U-Net.

 

-----------------------------------------------------------------------------------------------------------

Full text PDF >  

-----------------------------------------------------------------------------------------------------------

 


Copyright © 2024 UIKTEN
Copyright licence: All articles are licenced via Creative Commons CC BY-NC-ND 4.0 licence