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Abstract – A proposed algorithm for digital image 
encryption is presented in this paper. It combines 
permutation and substitution techniques.  Logistic map 
which is a chaos function is used in both techniques. 
Before encrypting, the keystream is generated first 
from the logistics map. Then, the plain image’s pixel 
positions are shuffled with perfect shuffle permutation 
based on ascending keystream order, thereby executing 
the permutation process. Next, the pixel values are 
substituted using the XOR operation with a keystream 
which is also generated from the logistic map. Pixels 
are operated in cipher block chain mode. This research 
aim is to develop an image encryption algorithm, 
especially in the permutation process, that has high 
resistance to attacks by crackers. The attack types 
observed in this research include statistical attacks, 
permutation matrix attacks, differential attacks, as 
well as brute force attacks. From the experimental 
results and analysis of the proposed algorithm indicate 
that it has high resistance from all those attacks. 

Keywords - Chaotic, image encryption, logistic map, 
permutation, perfect shuffle. 

1. Introduction

The increasing urgency to guarantee that image 
information in communications is secure and 
confidential, image transmission is increasingly on 
demand.  

DOI: 10.18421/TEM132-10 
34TUhttps://doi.org/10.18421/TEM132-10 

Corresponding author: Ernastuti Ernastuti,  
Department of Computer Science and Engineering, 
Gunadarma University, Indonesia  
Email: 34TUernas@staff.gunadarma.ac.idU34T 

Received:   16 January 2024. 
Revised:     14 April 2024. 
Accepted:  06 May 2024. 
Published: 28 May 2024. 

© 2024 Ernastuti Ernastuti, Ravi A Salim 
& Sulistyo Puspitodjati; published by UIKTEN. This work 
is licensed under the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 License.  

The article is published with Open Access at    
34TUhttps://www.temjournal.com/ 

 Information is visually presented by images, and 
the image-presented information enriches the 
textually-presented information. An example is 
satellite imagery that depicts the wealth of a country. 

Image encryption methods that are common like 
the Arnold and Magic transformations, protect the 
image information through distribution changes in 
the pixels, but their achieved security is not high [1]. 

Researchers have developed many cryptographic 
algorithms for encryption, but mostly text-message-
encrypting in nature. It should be noted, however, 
that some conventional encryption algorithms do 
encrypt images, although they are not efficient to 
implement.  Such algorithms are DES, AES, RSA, 
Rabin, among others. The reason behind this is that 
textual data and images have distinct characteristics. 
Very large data capacity is involved in storing an 
image; hence a large computing volume should be 
served for its encryption. Meanwhile, some 
applications need to be real-time, thus requiring 
lightning speeds in computing, making conventional 
algorithms out of mode in image encryption [2]. 
Examples of such applications are teleconferences, 
live video streaming, etc. Apart from volume 
reasons, the characteristic that differentiates images 
from text is the correlation of data between 
neighbors. The data in the text only neighbor the data 
before (predecessor) and after (successor), whereas 
in the image the pixels are neighbors with other 
pixels in eight cardinal directions, making the high 
correlation with the pixels in all eight directions. 
Therefore, after an image is encrypted, what must be 
paid attention to is that the cipher-image pixels and 
adjacent pixels should have zero correlation [2]. 

Recent years witness a lot of focus to chaos topics 
such as [3], [4], [5], [6], [7]. Initial conditions are 
influential to chaotic systems, in fact the latter is 
extremely sensitive to the former. Thus, excellent 
encryption properties resulted from that fact. 
Stronger security and lower predictability are 
achieved through the use of chaotic encryption 
systems [8]. 

Among others in the algorithm, chaos-theory 
based image encryption techniques has as their main 
methods, pixel values confusion and diffusion.  
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These aim at securing the image and resisting 
many brute attacks [9]. It is well-known that image 
has some specific natures like having adjacent pixels 
which correlate strongly, having data that require 
large space and others. These natures make the 
conventional encryption cryptosystems like DES and 
AES face great challenges in research of image 
encryption. It is urgent to design more effective 
encryption methods for protecting image information 
[2], [10].  

Typical scheme for image encryption is that it 
contains substitution and permutation stages aiming 
at fulfilling confusion and diffusion characteristics 
which are due to Shannon [11]. The latter or 
permutation stage alters the places by employing 
chaotic or non-chaotic generators [12], [13], [14]. 
The former or substitution stage alters the pixels 
values employing a generator of pseudo random 
number or two other techniques [15], [16], [17].  

A perfect shuffle is defined as an n element 
permutation or order so that each of its application 
produces a new order or returns to a previous order. 
Thus, the applications at some point give the original 
order. It is noticeable that there are 𝑒𝑒! permutations 
of 𝑒𝑒!  elements [18]. There is a recently proposed 
algorithm which is a technique based on perfect 
shuffle, hence its name: Perfect Shuffle Crypto 
Algorithm (PSCA). In the crypto system, the PSCA 
is categorized as a permutation or transposition 
technique [19]. There is a video encryption algorithm 
that is computationally efficient and secure that 
prompts the feasibility for encryption designed for 
real time applications avoiding complicated 
computational requirements and shortening key 
management through employing block shuffling 
technique. The algorithm is called Faro perfect 
shuffle [20]. 

To attempt the fulfilment of the Shannon's 
characteristics, it is indispensable for a technique of 
image encryption to embody permutations and 
substitutions. Two of three permutation techniques 
employing discrete chaotic maps are discussed in 
[21], these are: permutation vector, and discrete 
chaos. They display various scrambling properties 
therefore promise encryption breakthroughs. This 
paper deals with an image encryption via perfect 
shuffle permutation for confusion and XOR 
substitution operator for diffusion. The two phases 
are logistic map based, by integrating it to form a 
symmetric key cryptosystem, in which the decryption 
and encryption processes are inverses to each other.  

This paper describes and compares two perfect 
shuffle permutation techniques, namely with non-
chaotic generator and with chaotic generator. Section 
2 explains the materials as well as methods forming 
the foundation of the research.  

In Section 3, a comparison is presented between 
chaotic and non-chaotic based permutation shuffle 
exchange techniques. Section 4 discusses the analysis 
of the image encryption security system 
performance. Then, Section 5 concludes the paper.   
 
2. Material and Methods 
 

This section discusses the plain, scrambled, and 
cipher images, as well as the techniques, the model, 
and the measures applied to them along with their 
reasons. 
 
2.1. Permutation Technique 
 

The process where all pixels move from their 
original location is called the permutation phase. 
Obviously, it must be bijective since the number of 
pixels are finite. By doing so, the resulting image can 
be restored into the original. The bijection is 
representable as a matrix 𝑇𝑇 with entry 𝑇𝑇(𝑖𝑖, 𝑗𝑗) 
indicating that the pixel of position 𝑖𝑖 is mapped to 
position 𝑗𝑗. Thus, a size 𝑀𝑀 × 𝑁𝑁 permutation matrix 𝑇𝑇 
is given by:   

 

𝑇𝑇 = �
𝑇𝑇𝑖𝑖𝑗𝑗 , 𝑇𝑇𝑖𝑖𝑗𝑗 ∈ {1,2, … ,𝑀𝑀 × 𝑁𝑁};  

𝑇𝑇𝑖𝑖𝑗𝑗  are distinct, 𝑖𝑖 ∈ {1, … ,𝑀𝑀}, 𝑗𝑗 ∈ {1, … ,𝑁𝑁}       

(1) 

Suppose then the pixels of the image are 
processed top-bottom and left-right, by the following 
calculation (2) for the new pixel location: 

 
        𝑣𝑛𝑒𝑤=𝑑𝑑𝑖𝑖𝑣( 𝑇𝑇𝑖𝑖𝑗𝑗–  1, 𝑀𝑀) 1                              (2) 
         𝑤𝑤𝑛𝑒𝑤= 𝑚𝑜𝑑𝑑( 𝑇𝑇𝑖𝑖𝑗𝑗 –  1, 𝑀𝑀)  + 1                       
 

where 𝑣𝑛𝑒𝑤 and 𝑤𝑤𝑛𝑒𝑤 are the new column and row 
indices. 
 

Here, 𝑑𝑑𝑖𝑖𝑣 and 𝑚𝑜𝑑𝑑 give respectively the quotient 
and remainder of integer division 

𝑇𝑖𝑗−1
𝑀

,  for which 
𝑖𝑖 ∈ {1, … ,𝑀𝑀}  and   𝑗𝑗 ∈ {1, … ,𝑁𝑁} signify the row 
and column indices of the matrix 𝑇𝑇 respectively.  Let 
the permutation matrix 𝑇𝑇 as follow. 
 

𝑇𝑇 = �
11
13

10
15

14
5

1
2

7
12

4
8

9
16

3
6

� 

Let the pixel processing indices in a block of size 
4 ×4 be as in figure 1 (a).  For each pixel, the new 
location which is calculated by equation (2) based on 
matrix 𝑇𝑇, is presented in Figure 1 (b).   As an 
example, when 𝑖𝑖 = 1 and 𝑗𝑗 = 1, then the 
permutation matrix entry is 𝑇𝑇11 = 11  and by (2), 
𝑣𝑛𝑒𝑤 = 3   and 𝑤𝑤𝑛𝑒𝑤 = 3.  
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This indicates that at location (1,1), in the original 
block the pixel is now moved to the new block’s 
location (3, 3). 

 

(a)                                 (b) 
Figure 1. (a) original block’s pixel indices, and (b) new 

pixel locations after applying (2a) and (2b) formulas 
 

2.2. Perfect Shuffle Network Model 
 

Shuffle and Exchange are two routing functions 
on which Perfect Shuffle network model is based. In 
perfect shuffle, link nodes i and j are connected as 
follow:  
 
        𝑗𝑗 = 2 ∗ 𝑖𝑖                      , 0 ≤ 𝑖𝑖 ≤  2𝑛 2⁄ − 1            (3) 
           = 2 ∗ 𝑖𝑖 + 1 −  2𝑛    , other   
 
   where      𝑒𝑒 =  𝑙𝑜𝑔2 𝑁𝑁    (N: the number of processors) 
 

Functions representing shuffle exchange are 
implementable as either a network that recirculates or 
a network with many stages. 

 

 
Figure 2. A network for 𝑁𝑁 = 8 representing shuffle 

exchange 
 

 
Shuffle connections are denoted by the dashed 

arrows, while the exchange connections are denoted 
by the solid arrows.  Figure 2 depicts a one-stage 
network representing recirculating shuffle exchange 
for N = 8. The name of perfect shuffle originates 
from the following. Suppose an eight-card deck with 
cards numbered by is shuffled. Then the shuffle 
result is 0,4,1,5,2,6,3,7. After that the exchange is 
obtained by pairwise interchanging from left to right, 
resulting in 4,0,5,1,6,2,7,3. Figure 3 illustrates the 
shuffle exchange permutation process. 

  
Figure 3.  Perfect shuffle permutation 

 
Figure 3 presents a perfect shuffle with 𝑁𝑁 = 8 

processors. When  𝑁𝑁 =  2𝑛, a datum is obtained back 
to its original location after n times of shuffling 
operations [22]. Furthermore, when 𝑁𝑁 =  2𝑛,  a 
datum returns to its original location after 2n times of 
shuffle exchange operations [19], [23]. In other word 
the perfect shuffle permutation has a cycle period. 
 
2.3. Logistic Map 
 
      Chaos-based cryptography is an interesting 
research topic nowadays. There are three reasons for 
Chaos to be employed in cryptography: (1) Chaos’ 
sensitive nature to the system’s initial conditions, (2) 
chaos behaves randomly, and (3) the lack of periods 
for chaotic values. There are many chaos functions. 
An example of a chaos function is the logistic map, 
which is conventional. It is defined as follows.  
 
   𝑥𝑛+1 = 𝑟 ∗  𝑥𝑛 � 1 – 𝑥𝑛�                             (4) 
 
where 0 < 𝑥𝑛  < 1 and  0 <  𝑟 ≤ 4. 
     
      The density in the orbital period of a chaotic 
system can be seen using a bifurcation diagram, 
which is a diagram to illustrate the possible values 
for each parameter, such as the initial value 
parameter. The bifurcation diagram is reconstructed 
by drawing a plot of the system based on its 
parameters. Figure 4 displays the logistic map’s 
bifurcation diagram function. From Figure 4, when 
3.56995 < r ≤ 4 the map shows chaotic behavior. 
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Figure 4. Bifurcation diagram of the logistic map 

       
2.4. Image Cryptosystem Security Measures 
 

This subsection discusses measures in some types 
of attacks on cryptosystems, which are used to 
analyze the performance of resistance from 
encryption algorithms.  

 
2.4.1. Security Analyses from Statistics  
 
2.4.1.1. Histogram Analysis 

 
A histogram is an important image feature, 

because it exhibits the intensity of the distribution of 
the image pixel. In performing attacks using 
techniques from statistical analysis, the attacker uses 
a histogram in order to analyze occurrence frequency 
of the intensity of the pixels to deduce the plain 
image’s key or pixels, so that attacks with statistical 
analysis are not possible. In image encryption, it is 
important to produce a cipher image histogram which 
is not similar statistically to the histogram of the 
plain-image. Therefore, the cipher image pixels need 
to have distribution as near as possible to being 
uniform so that the histogram appears flat. Figure 
5(a) displays the 'Lena' image’s histogram, while 
Figure 5(b) is the cipher image histogram. 

The histogram for the cipher image looks flat 
unlike the histogram for the plain image. 

 

  
(a) (b)  

 
Figure 5. (a) Plain Lena histogram, and (b) chipper 

Lena histogram 
 
2.4.1.2. Adjacent Pixels Correlation Analysis 

 
Given two random variables x and y, one way of 

measuring their linear relationship’s direction and 
strength is through their correlation coefficient    
𝑐𝑜𝑟𝑥𝑦.  

If x and y are discrete stochastic variables of size 
n, (sometimes called random variables), then  𝑐𝑜𝑟𝑥𝑦 is 
given by 

                  𝑐𝑜𝑟𝑥𝑦 =  
𝑘𝑜𝑣(𝑥,𝑦)

�𝑑𝑑𝑒𝑒𝑣(𝑥) ∗ 𝑑𝑑𝑒𝑒𝑣(𝑦)
                          (5)     

where 
       𝑘𝑜𝑣(𝑥,𝑦) =  1

𝑛
∑ [𝑥𝑖𝑖𝑛
𝑖𝑖=1 − 𝐸(𝑥)][𝑦𝑖𝑖 − 𝐸(𝑦)] 

𝑑𝑑𝑒𝑒𝑣(𝑥)  =  
1
𝑒𝑒
� [𝑥𝑖𝑖 − 𝐸(𝑥)]2

𝑛

𝑖𝑖=1
 

𝐸(𝑥) =
1
𝑒𝑒
� 𝑥𝑖𝑖

𝑛

𝑖𝑖=1
 

The correlation coefficient value cannot exceed 1 
in absolute value. A correlation coefficient value of 
+1 shows a linear perfect unidirectional relationship 
(correlation) so that an increase in one variable is 
perfectly mimicked by the other and vice versa, a 
correlation coefficient value of -1 shows a linear 
perfect opposite relationship (correlation) so that 
increase in one variable is followed by a decrease of 
the same amount and vice versa, while between -1 
and +1 shows the degree of perfectness of linear 
dependence among the two variables. Positive value 
indicates unidirectionality, while negative value, 
opposite direction. The magnitude itself indicates the 
proportion of the effect of change of one variable 
towards the other. A correlation coefficient value 
approaching to -1 or +1 shows a near perfect linear 
unidirectional or opposite directional relationship 
between the two variables, while a coefficient value 
approaching 0 shows the weak version.  

Most plain images, have correlation coefficient 
between their adjacent pixels usually high (namely 
approaching 1 or -1). Image encryption aims to 
reduce the absolute value of the correlation 
coefficient between pixels to as near as possible to 
zero. For an ideal cryptosystem, the adjacent pixels 
correlation coefficients for cipher-image should be 
close to zero to effectively resist statistical analysis 
attacks. 
 
2.4.2.   Security Analysis of Permutation Matrix  
 

Two mean distance tests are evaluated in this 
paper for comparison, one of them is the mean 
distance one pixel moved, since the measurements 
involve only the images after one pixel is moved, and 
the other being is the mean distance between the new 
places of two adjacent pixels, since the 
measurements involve only distances among new 
places in the scrambled image. Evaluation for each 
test employs the Euclidean distance formula. 

The Euclidean distance formula between two 
pixels 𝑃𝑃𝑖𝑖  dan  𝑃𝑃𝑗𝑗 is  

 

        𝐿𝑖𝑖𝑗𝑗 =  �(𝑣𝑖𝑖 − 𝑣𝑗𝑗)2 + (𝑤𝑤𝑖𝑖 − 𝑤𝑤𝑗𝑗)2                            (6) 
 

where the column and row indices for pixel 𝑃𝑃𝑖𝑖 inside 
the image are written as 𝑣𝑖𝑖 and 𝑤𝑤𝑖𝑖 respectively.  
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     The greater the displacement distance of two 
pixels from the original image, the more difficult it is 
for the cracker to guess the original image. 
 
2.4.3.   Differential Analysis Attack 
 

To evaluate the robustness of cryptosystems 
resisting differential analysis attack, there are two 
indices commonly used, namely NPCR and UACI, 
each stand for Number of Pixels Change Rate and 
Unified Average Changing Intensity. 

NPCR measures the percentage of pixels that 
differ when the original 𝐼𝐼 and the cipher 𝐾𝐾 images 
are compared. The formula is:      

𝑁𝑁𝑃𝑃𝑁𝑁𝑁𝑁 = 100% ×
1

𝑀𝑀 × 𝑁𝑁
� 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑗𝑗)

𝑖𝑖,𝑗𝑗
                   (7) 

   where 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑗𝑗) = �1,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝐼𝐼(𝑖𝑖, 𝑗𝑗) ≠ 𝐾𝐾(𝑖𝑖, 𝑗𝑗),
0,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝐼𝐼(𝑖𝑖, 𝑗𝑗) = 𝐾𝐾(𝑖𝑖, 𝑗𝑗), 

for which, 𝐼𝐼(𝑖𝑖, 𝑗𝑗) and 𝐾𝐾(𝑖𝑖, 𝑗𝑗) are pixel values in 
the plain and cipher images respectively. 

The NPCR index is applied to calculate the pixel 
percentage possessing distinct intensity values when 
two images are compared.  

Pixel rate of change within one pixel from the 
plain to the cipher images in the modification process 
is measured by NPCR since its value reflects 
effectivity in performance. As an accepted norm, 
0.99 is the practical value for 1-NPCR. In other 
words, the higher the NPCR value is, the more 
effective the performance is. 

UACI index measures the difference in mean 
intensity from a plain image denoted by 𝐼𝐼 to its 
cipher image denoted by 𝐾𝐾. The formula is 
 

𝑈𝑈𝑈𝑈𝑁𝑁𝐼𝐼 = 100% ×
1

𝑀𝑀 × 𝑁𝑁
�

|𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝐾𝐾(𝑖𝑖, 𝑗𝑗)|
255𝑖𝑖,𝑗𝑗

       (8) 

     
UACI means to calculate the average change rate 

of each pixel value between two images. The 
theoretical expectation value of UACI is 33.46%.  

In statistics, MAE which stands for mean absolute 
error, measures two continuous variables’ difference. 
Thus, MAE can judge the change from the plain 
image I to the cipher image K.  If MAE is large 
enough, then the encryption effect is more secure. 
The formula for MAE is 
 
       𝑀𝑀𝑈𝑈𝐸 =  1

𝑀 ×𝑁
�∑ |𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝐾𝐾(𝑖𝑖, 𝑗𝑗)|𝑖𝑖,𝑗𝑗 �                

(9) 
 

The computation of MAE can be viewed as 
follows. First the value is computed only for the red 
pixels, then for the green ones, then for the blue ones. 
Afterwards, the average results are taken by 
summing them up and dividing the number by 3. 

3. Perfect Shuffle Technique 

There are two kinds of perfect shuffle technique. 
One is non chaotic in nature and the second is 
chaotic. This section explores each of them. 
 
3.1. Non-Chaotic Shuffle Exchange Permutation  
 

In this section, an experiment using perfect 
shuffle permutation is performed to pixel indices of a 
plain image without any relation to keystream of a 
chaos function. Afterwards the resulting image is 
observed, and then its histogram and adjacent pixels 
correlation aspects are analyzed. Apart from that its 
average distance when one pixel is moved and 
pairwise average distance among adjacent pixels are 
also analyzed. The non-chaotic shuffle exchange 
permutation algorithm is presented as Algorithm 1 as 
follows.  
===================================== 
Algorithm 1: Non-chaotic Shuffle Exchange Permutation 
===================================== 
1. Input the plain image of size 𝑀𝑀 × 𝑀𝑀. 
2. Represent image indices as a matrix of size 𝑀𝑀 × 𝑀𝑀. 
3. Transform the matrix into a vector of size 1 × 𝑀𝑀2  by 

putting its columns into a single sequence. 
4. Perform the shuffle exchange process. 
5. Transform the result back into matrix form by forming 

a sequence of column vectors of size M.   
6. Present the scrambled image. 
 
 

For example, let a plain pixel indices matrix 𝑇𝑇1 
of size 𝑀𝑀 × 𝑀𝑀:  

𝑇𝑇1 = �
1
2

5
6

9
10

13
14

3
4

7
8

11
12

15
16

� 

where 𝑀𝑀 = 4. 
 

Transform the matrix 𝑇𝑇1 into a vector 𝑋𝑋 of size 
1 × 𝑀𝑀2 by column as follows.  𝑋𝑋 = {1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11, 12, 13, 14, 15, 16}. After that perform 
the shuffle exchange permutation on 𝑋𝑋. The output is 
a sequence of indices which equals 𝑌, where 𝑌 = {2, 
4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15}, and 
then transform 𝑌 into a matrix 𝑇𝑇1, so that 𝑇𝑇1 is now a 
shuffle exchange permutation matrix.   

 

𝑇𝑇1 = �
2
4

10
12

1
3

9
11

6
8

14
16

5
7

13
15

� 

 
        Figure 6 (a) displays the pixel indices of plain 
image and Figure 6 (b) displays the new location of 
image pixel indices after shuffling with nonchaotic 
shuffle exchange permutation for M=4. 
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(a) (b) 

 

Figure 6. (a) pixel Indices of plain Image and (b) new 
pixel location after applying nonchaotic shuffle exchange 

permutation algorithm 
 
Plain images and scrambled images are analyzed in 
histograms and adjacent pixel correlations. The 
histogram and adjacent pixel correlation for plain 
Lena and plain Baboon are explained in Figure 7 (a) 
and Figure 8 (a) respectively. Meanwhile, the 
histogram and correlation of adjacent pixels for 
scrambled Lena and scrambled Baboon are depicted 
in Figure 7 (b) and Figure 8 (b) respectively. 

 

 
(a) 

  
(b)  

 
Figure 7. Lena Image, histogram and correlation of 

adjacent pixels for (a) Plain, (b) Scrambled images of 
nonchaotic shuffle exchange 

 

 
(a) 

 
(b) 

Figure 8. Baboon image, histogram, and correlation of 
adjacent pixels for (a) Plain, (b) Scrambled images 

 
 

In Figure 7(a) and Figure 8(a) explain that the 
adjacent pixels’ correlation respectively for the 
Horizontal (H), Vertical (V), and Diagonal (D) 
directions is close to 1. This indicates that in the 
plain image, between its pixels there is a strong 
correlation. Meanwhile, in scrambled images, the 
correlation coefficient is nearly zero. This indicates 
that adjacent pixels are no longer correlated.  

In general, the adjacent pixels’ average 
correlation in any direction, in scrambled Lena and 
scrambled Baboon is calculated by averaging the 
total correlation values for the 3 RGB colors namely 
red, green, and blue. The average results are listed in 
Table 1. The algorithm 1 effectively resists statistical 
analysis attacks. 

 
Table 1. Adjacent pixels correlation of shuffle exchange 
for scrambled Lena and baboon (averaged over the 3 
color channels)  
 

 
 

The adjacent pixel parameters are good (nearly 
zero), but the scrambled Lena in Figure 7 (b) and the 
scrambled Baboon in Figure 8 (b), visually still look 
a little like their respective plain images. The 
scrambled image is still recognizable. This means 
that the nonchaotic random exchange permutation 
algorithm is unsecure and can be hacked by 
attackers. 
 
3.2. Chaotic Shuffle Exchange Permutation 
 

The use of nonchaotic shuffle exchange 
permutations in Algorithm-1 has the potential to 
cause unsecure image encryption because it has a 
cycle period. If the pixel positions in an image are 
continuously scrambled, then one day the resulting 
image will be the same as the original image. 
Additionally, Algorithm 1 is visually unsecure for the 
scrambled images.  

 

Figure 9.  Block diagrams of the chaotic perfect shuffle 
encryption system 

        
To overcome the insecurity problem of the 

permutation phase in Algorithm 1, this paper 
proposes an image encryption system (Fig. 2.8) 
which employs Perfect shuffle permutation in the 
confusion stage, and XOR substitution in the 
diffusion phase.  

Scrambled Horizontal Vertical Diagonal
Lena 0.0435 0.1430 0.0679

Baboon 0.0910 0.0739 0.0585

Adjacent Pixels Correlations
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Both phases are based on a logistic map 
integrated in a symmetric key cryptosystem, in which 
the decryption and the encryption processes are 
inverses to each other.  
 
3.2.1. Chaotic Perfect Shuffle Permutation  

 
A plain image is encrypted by first scrambling it 

whole using the chaotic shuffle exchange 
permutation as in Algorithm 2. 

 
======================================= 
Algorithm 2:  Chaotic Shuffle Exchange Permutation 
==================================== 
1. Input the plain image of size (𝑀𝑀 ×  𝑀𝑀). 
2. Represent image indices in the form of a matrix of 

size (𝑀𝑀 ×  𝑀𝑀). 
3. Transform the matrix into a vector of size ( 1 ×

 𝑀𝑀2 ) by putting its columns into a single sequence. 
4. Generate the  𝑀𝑀2 keystream from the Logistic Map 

Function. 
5. Put the keystream into one-to-one correspondence to 

the vector of plain image indices. 
6. Arrange the keystream into ascending order. 
7. Arrange the positions of the plain image indices 

according to the ascending keystream. 
8. Perform the shuffle exchange. 
9. Transform the result back into matrix form by forming 

a sequence of column vectors of size M. 
10. Present the scrambled image. 
====================================== 
 
For example, let a plain pixel indices matrix 𝑇𝑇2 of 
size 𝑀𝑀 × 𝑀𝑀:  

𝑇𝑇2 = �
1
2

5
6

9
10

13
14

3
4

7
8

11
12

15
16

� 

where 𝑀𝑀 = 4. 
 

Transform the matrix 𝑇𝑇2 into a vector 𝑋𝑋 of size 
1 × 𝑀𝑀2 by column. It will be  𝑋𝑋 = {1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 13, 14, 15, 16}. Then, generate 
4 × 4  keys from the logistic map 𝑥𝑛+1= 
𝑟 𝑥𝑛 � 1 – 𝑥𝑛�.  The logistic map is repeated 16 
times so that a 4 × 4  permutation matrix 𝑇𝑇2 is 
produced. Suppose 𝑟 = 0.3999  and  𝑥0= 0.200, then 
the logistic map output is 𝑋𝑋’ = {0.6398, 0.9215, 
0.2891, 0.8219, 0.5853, 0.9706, 0.1141, 0.4042, 
0.9630, 0.1423, 0.4884, 0.9992, 0.3162, 0.1261, 
0.4978, 0.1892}.  

After arranging 𝑋𝑋′ in ascending order, the plain 
image index positions are mapped to produce 
𝑌 = {11, 13, 7, 12, 10, 15, 4, 8, 14, 5, 9, 16, 1, 2, 3, 6}, 
and then transform 𝑌 into a matrix 𝑇𝑇2, so that 𝑇𝑇2 is 
now a discrete chaos permutation matrix.   

𝑇𝑇2 = �
11
13

10
15

14
5

1
2

7
12

4
8

9
16

3
6

� 

 
Afterwards, shuffle exchange permutation is 

applied to 𝑌, so that the plain image index positions 
are mapped to produce 𝑍 = {5, 9, 14, 7, 3, 13, 8, 16, 
11, 10, 1, 15, 2, 4, 6, 12}, and then transform 𝑍 into a 
matrix 𝑇𝑇2, so that 𝑇𝑇2 is now a chaos shuffle exchange 
permutation matrix. 
 

                      𝑇𝑇2 = �
5
9

3
13

11
10

2
4

14
7

8
16

1
15

6
12

� 

 
Figure 10 (a) displays the pixel indices of the 

plain image and Figure 10 (b) shows new location of 
pixel indices after shuffling with chaotic shuffle 
exchange permutation for 𝑀𝑀 = 4. 

 
(a) (b) 

 

Figure 10.  (a) pixel indices of plain image and (b) new 
pixel location after applying chaotic shuffle exchange 

permutation algorithm. 
 

3.2.2. XOR Substitution  
 

The encryption process is formulated as follows 
              𝑎𝑖𝑖 =  𝑏𝑖𝑖 𝐱𝐨𝐫 𝑘𝑖𝑖                             

(10) 
 
where   𝑎𝑖𝑖: i-th pixel value of cipher image;   𝑏𝑖𝑖: i-th 
pixel value of scrambled image; 𝑘𝑖𝑖: i-th keystream.  

The integer of keystream generated from the 
logistic map function with the initial value 𝑥0 and 
parameter r is operated with the scrambled image 
pixel values via XOR operator as equation (10). 

However, the random values generated from the 
logistic map are real numbers. Therefore, these 
values have to be expressed as integers. For this, a 
simple transformation that takes the decimal part of a 
real number and discard the insignificant zeros, then 
extract q whole number digits, can be utilized.  

As an example, take 𝑞 = 4 and 𝑥𝑖𝑖 =
 0.003162812, then taking the decimal part results 
in 003162812, removing the two zeros that are not 
significant in front of it, then extracting 4 digits, ends 
up in 3162.  
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This is the keystream that will be XORed with 
the i-th pixel. Since the pixel values are within the 
integer range of [0, 255], then before being XORed 
the keystream is first modulated by 256. In this case,  
𝑘𝑖𝑖 = 3162  𝑚𝑜𝑑𝑑 256 =  90. 

 
4. Security Analysis and Experimental Results 
 
      The encryption system depicted in Figure 9 is 
simulated using Jupiter Lab with Python 
programming on CPU AMD Ryzen 3 3250U and 
RAM 8 GB. The experiment was run on two test 
images, namely the 'Lena' image and the 'Baboon' 
image, each of which had 3 different sizes (64 × 64), 
(128 ×128) and (256 × 256). The main parameters 
used to produce the keystream logistic map in the 
experiment are: 𝑟 = 0.3989  and  𝑥0= 0.6295 for 
permutation process and 𝑑𝑑 = 0.3898  and  𝑦0= 0.5434 
for substitution process. 
 
4.1.   Pixel Average Distances in the Scrambled Image  
 

The average distances of one pixel moved 
indicates the mean of how far a pixel has moved 
from its original location.  Additionally, the average 
distance of two adjacent pixels in the scrambled 
image indicates the mean distance between each 
other resulting from the movements of adjacent 
pixels, which are presented horizontally, vertically, 
and diagonally respectively.  The average distance 
values of Table 2 show that the pixels have been 
scattered. 

Table 2 indicates that the chaotic shuffle 
exchange permutation algorithm provides better 
results on the average pixel displacement distance, 
because almost all indicators achieve a greater 
average distance than the nonchaotic shuffle 
exchange permutation algorithm. 

 
Table 2.  Average distances of three sizes Lena 
 

 
 
4.2.  Histogram and Adjacent Pixels Correlation 

4.2.1. Histogram 
 

The pixels in Figure 11c, namely the Lena cipher 
and in Figure 12c, namely the Baboon cipher, each 
have a relatively uniform distribution. These cipher 
pixels are depicted with a histogram that appears flat. 

 

Lena Image 

 
(a) 

 
(b) 

 
(c) 

 

Figure 11.    Lena image, histogram, and adjacent 
correlations for (a) Plain, (b) Scramble, (c) 

Encrypted/cipher 
 

The histograms for the cipher images in Figures 
11c and 12c each appears differently from the 
histograms for the plain images in Figures 11a and 
12a. This indicates that attacks with statistical 
analysis will not be possible to work in the 
encryption system which produces a cipher image 
histogram that is not statistically similar to histogram 
of the plain image. 
Baboon Image 

 
(a) 

(b) 

(c)  
 

Figure 12.  Baboon Image, Histogram and Adjacent 
Correlations for (a) Plain,  (b) Scramble,   (c) 

Encrypted/cipher 
 

4.2.2. Adjacent Pixel Correlations  
     
To investigate the correlation coefficient among 
adjacent pixels in plain-image and cipher-image,  the 
chaotic shuffle exchange algorithm calculates from 
between two horizontally adjacent pixels, two 
vertically adjacent pixels, and two diagonally 
adjacent pixels in both images respectively. 

Horizontal Vertical Diagonal
64 24,4953 32,0076 20,4643 45,1419
128 48,9771 64,0038 64,0038 90,3934
256 97,9473 128,1566 93,0618 180,9014
64 33,2838 33,4593 32,7364 33,5058
128 66,5933 66,4522 66,4061 66,6672
256 133,5415 133,0872 133,1689 133,1974

Scrambled 
LENA

Matrix
(M)

One Pixel 
Moved

 Between Two Adjacent Pixels

Nonchaostic 
Shuffle 

Exchange

Chaostic 
Shuffle 

Exchange
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This is applied to both the 'Lena' and 'Baboon' 
images for permutation and subtitution processes 
where each produces the scrambled image and the 
cipher image. The correlation coefficient for adjacent 
pixels is calculated by employing Formula (5). The 
correlation values of the experiment result to 
examine the proposed algorithm are listed in Table 3. 
 
Table 3. Adjacent pixels correlation of chaotic shuffle 
exchange   
 

 
     

 The adjacent pixels correlation values in Table 3 
are obtained from the average of the sum of all 
adjacent pixels’ correlation values for all the three 
color channels, namely red, green, and blue 
respectively in each three directions. The correlation 
values are presented in Figures 11 (b) and 12 (b) for 
the scrambled images, and in Figures 11 (c) and 12 
(c) for the cipher images.  Table 3 indicates that the 
adjacent pixel correlation coefficients in each 
direction in both the scrambled as well as the cipher 
images are nearly zero. This means that the 
neighboring pixels are virtually no longer correlated.  
In addition, it appears that their coefficient in the 
scrambled image resulting from permutation of 
chaotic shuffle exchange algorithm is 10 times 
weaker than the result from nonchaotic shuffle 
exchange algorithm (To compare, see Table 1). This 
indicates that the resistance of chaos shuffle 
exchange algorithm against the statistical analysis 
attack is very strong. 
 
4.3.    MAE, NPCR and UACI Measures 
 

Table 4 lists the simulation results of MAE, 
NPCR, and UACI measures.  

 
Table 4. Measures for differential attacks averaged from 
the three color channels 
 

 
      

The average MAE value is 76.1562. This is a 
fairly large MAE value. Hence, the proposed image 
encryption system effect is accordingly more secure. 

 

The average values of UACI and NPCR of the 
two encrypted images in this experiment are 
3.4512% and 99.5941% respectively. They 
approximate perfect values with differentiation. This 
proves that in resisting differential attacks, they are 
highly sensitive according to the standards of the 
proposed encryption. In other words, Table 4 
demonstrates that the proposed image encryption 
system well resists differential analysis attacks.  
 
4.4.    Key Space 

 
In the encryption/decryption process, the overall 

number of different keys involved is stated by the 
key space.  To incapacitate the efficiency of a brute 
force attack, the key space must be large enough. 
There are four secret key parameters (initial value 
parameters) used in this encryption algorithm, 
namely 𝑟 and 𝑥0 in the logistic map for the 
permutation process, and 𝑑𝑑  and 𝑦0 in the logistic 
map for the substitution process.  These are four real 
valued parameters where each can be computed in  
10−15 order of 64-bit double precision in IEEE 
floating point standard.  So, the number of possible 
initial values of logistic map is 1015.  Therefore, in 
this research  the  entire key space used in image 
encryption is K( 𝑥0, r,  𝑦0, s ) = 1015 ∗ 1015 ∗  1015 
* 1015 = 1060, large enough to survive brute-force 
attacks. 

 
5. Conclusion 
 

The experimental results of chaotic perfect 
shuffle permutation algorithm on color images shows 
that, firstly, the cipher image has flat histograms. 
This indicates that the pixels are distributed 
uniformly, so that attacks with statistical analysis are 
not possible. Besides that, the cipher image’s 
adjacent pixels’ correlation coefficient is low, 
namely around 0.00576. This indicates that these 
pixel values no longer have a linear relationship so 
that also incapacitating statistical analysis attacks. 
Secondly, permutation matrix analysis shows that the 
pixels are very scattered, so that the cipher image is 
not recognizable at all as being related to the plain 
image. Thirdly, the cipher image has average MAE= 
75.20, PNCR= 99.60 and UACI= 33.40; it indicates 
the image encryption of chaotic perfect shuffle is 
very good and tough in facing differential analysis 
attacks. Then lastly, the key space has large number 
of possible keys; it shows that it is sufficiently tough 
in withstanding brute-force attacks. In other words, 
the chaotic perfect shuffle permutation algorithm 
which is proposed in this research is capable of 
encrypting digital images with high security in 
resisting the four attacks. 
 

Scrambled Horizontal Vertical Diagonal
Lena 0.0060 0.0015 0.0052

Baboon 0.0052 0.0139 0.0045

Encrypted/chiper Horizontal Vertical Diagonal
Lena 0.0046 0.0106 0.0021

 Baboon 0.0081 0.0065 0.0027

Adjacent Pixels Correlations

Lena 77,2255 99,5809 33,6179

Baboon 75,0869 99,6073 33,2845

Encrypted/Chiper 
Image MAE NPCR UACI
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