
TEM Journal. Volume 13, Issue 2, pages 885-896, ISSN 2217-8309, DOI: 10.18421/TEM132-05, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 885

Enhancing Signed Graph Attention Network
by Graph Characteristics: An Analysis

Panatda Kaewhit P

1
P, Chanun Lewchalermvongs P

1
P, Phakaporn Lewchalermvongs P

2

P

1
PDepartment of Mathematics, Faculty of Science, Mahidol University, Bangkok, Thailand

P

2
PMahidol University, Nakhon Pathom, Thailand

Abstract – A graph neural network (GNN) is one of
successful methods for handling tasks on a graph data
structure, e.g. node embedding, link prediction and
node classification. GNNs focus on a graph data
structure that must aggregate messages on nodes in the
graph to retain a graph-structured information in new
node’s message and proceed tasks on a graph. One of
modifications on the propagation step in GNNs by
adopting attention mechanism is a graph attention
network (GAT). Applying this modification to signed
graphs generated by sociological theories is called
signed graph attention network (SiGAT). In this
research, we utilize SiGAT and create novel graphs
using graph characters to assess the performance of
SiGAT models embedded in nodes across various
characteristic graphs. The primary focus of our study
was linked prediction, which aligns with the task
employed in the previous research on SiGAT. We
propose a method using graph characteristics to
improve the time spent on the learning process in
SiGAT.

Keywords – Graph neural network, graph attention
network, signed graph attention network, graph
characteristics, graph theory.

DOI: 10.18421/TEM132-05
35TUhttps://doi.org/10.18421/TEM132-05 U35T

Corresponding author: Chanun Lewchalermvongs,
Department of Mathematics, Faculty of Science, Mahidol
University, Bangkok, Thailand
Email: 35TUchanun.lew@mahidol.eduU35T

Received: 03 November 2023.
Revised: 16 February 2024.
Accepted: 22 February 2024.
Published: 28 May 2024.

© 2024 Panatda Kaewhit, Chanun
Lewchalermvongs & Phakaporn Lewchalermvongs;
published by UIKTEN. This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivs
4.0 License.

The article is published with Open Access at
Uhttps://www.temjournal.com/

1. Introduction

A graph is a discrete structure that comprises
vertices (also known as nodes) and edges that
connect these vertices. Graph models can be used to
solve problems in various disciplines since they can
represent complex data as graphs of relationships
between objects. A graph neural network (GNN) is a
type of artificial neural network (ANN) that applies
ANNs to graphs. The power of GNNs in modelling
the dependencies between nodes in a graph has
resulted in breakthroughs in research related to graph
analysis. Recently, GNNs have been adapted with the
attention mechanism to weight node features in the
aggregating task, leading to the creation of graph
attention networks (GATs). Unlike general weighting
of neural networks, GATs use self-attention, which
weights the nodes’ features.

To address the limitations of GATs in handling
signed graphs, which are graphs with positive and
negative edges, signed graph attention networks
(SiGATs) were developed by incorporating graph
characters generated by sociological theories such as
balance theory and status theory. SiGAT is a variant
of graph convolutional networks that incorporates
attention mechanisms, enabling it to selectively
attend to positive or negative edges in signed graphs.
SiGAT is a relatively new concept in GNN that has
gained popularity in recent years. While SiGAT has
shown great promise in various applications, it is not
without limitations. One of the main limitations of
SiGAT is its sensitivity to the graph structure. SiGAT
performs well when the graph is fully connected, but
its performance degrades as the sparsity of the graph
increases. Additionally, SiGAT can be
computationally expensive, especially for large
graphs. Graph characteristics are important in GNNs
because they provide valuable information about the
structure and properties of the graph. GNNs are
designed to operate on graph-structured data, where
the nodes and edges represent entities and
relationships between them.

mailto:chanun.lew@mahidol.edu
https://www.temjournal.com/
https://doi.org/10.18421/TEM132-05

 TEM Journal. Volume 13, Issue 2, pages 885-896, ISSN 2217-8309, DOI: 10.18421/TEM132-05, May 2024.

886 TEM Journal – Volume 13 / Number 2 / 2024.

By considering graph characteristics, GNNs can
effectively leverage the inherent structure of the
graph to perform various tasks, such as node
classification, link prediction, and graph-level
prediction [4], [9]. A subgraph is a smaller graph that
is formed by selecting a subset of the vertices and
edges from a larger graph. In other words, a subgraph
is a graph that can be obtained from another graph by
deleting some of its vertices and edges. The subgraph
retains the structure and properties of the original
graph, but may have fewer vertices and edges. A
subgraph can be used to analyze a specific subset of a
graph, or to simplify a graph by removing some of its
complexity. Subgraphs are an important concept in
graph theory and are used in many applications such
as network analysis, data mining, and social network
analysis. Subgraphs provide a localized view of the
graph by focusing on a subset of nodes and edges.
GNNs operate on these subgraphs, enabling them to
capture local information and dependencies. By
considering subgraphs, GNNs can leverage the
neighborhood information around each node,
allowing for localized information propagation and
learning. Working with the entire graph can be
computationally expensive, especially for large-scale
graphs. Subgraphs provide a way to reduce the
computational complexity by considering only a
subset of the graph. This allows GNNs to scale to
larger graphs and makes training and inference more
efficient. In this study, we employed SiGAT and
generated new graphs using graph characters to
evaluate the node-embedded performance of SiGAT
models across different characteristic graphs. We
used the characteristic graph list from a previous
study in [12] and the Bitcoin Alpha dataset [15], [21]
to evaluate SiGAT’s performance. We also generated
a new characteristic graph list based on balance
theory to assess the time spent on the models.
Finally, we created new datasets to train the balance-
theory-generated models to examine the types of
graphs suitable for SiGAT models and to confirm the
performance of characteristic graph lists. Our main
task was linked prediction, which is the same task
used in the previous study on SiGAT.

The remainder of this article is organized as
follows. The related work and background are
discussed in Section 2. The proposed methods and
illustrated examples are presented in Sections 3, 4
and 5. Finally, we conclude and discuss future work
in Section 6.

2. Preliminaries

ANNs are computational systems inspired by
biological neural networks, closely resembling the
human brain's operations, and excel in various
problem-solving tasks.

They utilize a directed graph structure with nodes
representing neurons and edges denoting
connections. Nodes are organized into input, hidden,
and output layers, facilitating data flow. ANNs
operate through interconnected units that simulate
neural signal transmission. The perceptron, the basic
unit, has evolved into the multi-layer perceptron to
address computational limitations. Forward and
backward propagation processes are inspired by
biological neural networks' action potentials,
facilitating learning. ANNs have proven effective in
various domains, such as estimating vapor pressures,
stock price analysis, gas price forecasting, and
bankruptcy prediction, highlighting their versatility
and accuracy in different applications [11], [6], [18],
[3]. GNNs, a subset of ANNs, are designed for graph
data. Adapting them to diverse graph types is a
current challenge. GNNs use message-passing
models to aggregate node information, making them
suitable for tasks like link prediction and
classification. The concept was initially introduced
by Gori [8] and Scarselli [17]. Different aggregation
methods have led to various GNN models, including
the influential Graph Convolutional Network (GCN)
by Kipf and Welling in 2017 [14]. GCN applies
spectral graph theory to perform convolutions on
graph-structured data, capturing both local and global
information. Extensions like GAT [20] and diffusion
convolutional neural network (DCNN) [2] have
followed. GNNs have practical applications in fields
like quantum chemistry and reinforcement learning
[7], [13], [16]. However, challenges remain regarding
expressiveness, efficiency, and model robustness.

2.1. Graph Attention Network

A GAT, introduced by Velickovic et al. [7], is a

model that leverages the attention mechanism to
perform graph aggregation. While attention is
typically used in artificial neural networks to assign
weights to the inputs, GATs utilize self-attention,
which assigns weights to the feature elements of each
node based on their importance. By doing so, the self-
attention mechanism helps to identify the most
relevant features of each node, which can be used for
downstream tasks such as classification or regression.

In a GAT, the input data for each node is
represented as a vector h�⃗ i ∈ ℝF, where F is the
number of features. The goal of the GAT is to
aggregate this input data in a way that captures
important relationships between nodes. This is done
by computing a new feature vector h′���⃗ i ∈ ℝF′ for each
node i = {1,2, . . . , N}, where F′ is the number of new
features after aggregation. The aggregation process
involves a linear transformation parametrized by a
weight matrix W ∈ ℝF′×F′, followed by an attention
operation.

 TEM Journal. Volume 13, Issue 2, pages 885-896, ISSN 2217-8309, DOI: 10.18421/TEM132-05, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 887

The attention operation assigns weights to each of
the neighboring nodes, based on the relevance of
their features to the target node. Finally, the
aggregated features are smoothed by an activation
function σ, which adds non-linearity to the model.
Equation 1 represents an aggregation function that
combines features of all neighboring nodes j of a
given node i, where Ni is the neighbors of node i.

h′���⃗ i = σ�∑ αijWh�⃗ jj∈Ni � (1)

αij = softmaxj�eij� = exp�eij�
∑ exp�eij��j∈Ni�

 (2)

eij = LeakyReLU� a�⃗ T[Wh�⃗ i||Wh�⃗ j]� (3)

This aggregation process involves a linear
transformation, parameterized by the weight matrix
W ∈ ℝF′×F′, and an attention mechanism based on
αij. The output of this aggregation is then smoothed
by an activation function σ.

In Equation 3, the attention mechanism a�⃗ T P

 acts as
the coefficient of the LeakyReLU function. This
means that the alignment model score eij R is
influenced by the vector element obtained by
concatenating the transformed feature vectors h�⃗ i and

h�⃗ j. The LeakyReLU nonlinearity function is an
activation function that applies the rectified linear
unit (ReLU) function with a negative slope (Figure
1). Finally, to prepare for the aggregation step as in
Equation 2, the alignment model score eij R is
normalized using the softmax function to obtain αij.

Figure 1. The left is ReLU function and the right is

LeakyReLU function

2.2. Signed Graph Attention Network

Signed graph attention network (SiGAT) is a type
of graph neural network that has been gaining
attention in recent years. SiGAT is a variant of graph
convolutional networks that incorporates attention
mechanisms, enabling it to selectively attend to
positive or negative edges in signed graphs.

One of the earliest works on SiGAT was proposed
by Derr et al. [5].

The authors introduced SiGAT, which is a graph
convolutional network that uses both node-level and
edge-level attention mechanisms. The node level
attention mechanism enables SiGAT to selectively
attend to positive or negative nodes, while the edge-
level attention mechanism enables it to selectively
attend to positive or negative edges. The authors also
proposed a graph diffusion process to enable SiGAT
to learn from multi-hop graph structures. In 2019,
Huang et al. [12] proposed a modified SiGAT
architecture that uses both global and local attention
mechanisms. The global attention mechanism
considers all the nodes and edges in the graph, while
the local attention mechanism focuses only on the
immediate neighbors of each node. The authors also
introduced a signed diffusion process to enable
SiGAT to learn from multi-hop graph structures.
SiGAT has been applied to various real-world
applications, including sentiment analysis,
recommendation systems, and fraud detection.
Signed graphs have been utilized to model and
interpreted voting patterns [1]. The signed graph
analysis is valuable in interpreting voting behavior.
In the following sections, we will provide a detailed
explanation of how GAT operates with characteristic
graphs.

2.2.1. Balance Theory and Status Theory

SiGAT utilizes sociological theories, such as

balance and status theories, to create a characteristic
graph for its operations. The status theory establishes
a directed relationship between objects (nodes), with
one object being higher or lower than the other. Since
SiGAT operates within a signed graph domain, the
status is labeled as positive or negative. For instance,
a positive relation between object A and object B
means that B has a higher positive status than A.
Conversely, a negative relation of object A to object
B means that B has a higher negative status than A.
In the second row of Figure 2, all triads satisfy the
status theory by fulfilling “status(j) > status(i)” and
“status(k) > status(j)”, resulting in “status(k) >
status(i)” and forming a complete circle triad. All
status triads in Figure 2 are combinations of balance
triads, which are further elaborated below. Balance
theory, which originated in social psychology during
the mid-20th century, was initially developed as a
model for undirected signed networks [10].
According to the balance theory, a triad in an
undirected signed network is considered balanced
when all signs within the triad are positive or when
only one sign is positive, and the others are negative.
Suppose a positive refers to a friendship relationship
and a negative refers to an enemy relationship.

 TEM Journal. Volume 13, Issue 2, pages 885-896, ISSN 2217-8309, DOI: 10.18421/TEM132-05, May 2024.

888 TEM Journal – Volume 13 / Number 2 / 2024.

Then the first two triads in the first row of Figure
2 can be described as “the friend of my friend is my
friend” and “the enemy of my enemy is my friend,”
respectively. These two relationships are considered
balanced. Conversely, the last two triads in the first
row of Figure 2 are unbalanced.

Figure 2. All triads in the first row are balance triads and
all triads in the second row are status triads [12]

SiGAT leverages the balance and status theories

to generate characteristic graphs in its method. There
are 38 characteristic graphs, which are shown in
Figure 3.

Figure 3. The 38 characteristic graphs in SiGAT [12]

2.2.2. SiGAT Process

Let 𝐺(𝑉,𝐸, 𝑠) be a signed directed graph, let

ℎ�⃗ 𝑚𝑖
(𝑢) ∈ ℝ𝐹 be the feature vector of a node 𝑢 ∈ 𝑉,

and let ℎ′���⃗ 𝑚𝑖
(𝑢) ∈ ℝ𝐹′ be the new feature vector of 𝑢

after aggregation, where 𝐹 is the number of features
and 𝐹′ is the number of new features after
aggregation according to each characteristic graph in
the list 𝑀 and 𝑖 ∈ {1,2, … , |𝑀|}. The SiGAT
algorithm is shown below. The SiGAT algorithm is
an algorithm that embeds the node 𝑢 ∈ 𝑉 of
𝐺(𝑉,𝐸, 𝑠) into a representation 𝑍𝑢. This purpose is
inherited from GAT. The starting section explains the
characteristic graphs involved in the method, which
is different from GAT. The characteristic graphs
𝑚𝑖 ∈ 𝑀 are generated and fed into the characteristics
graph extract function 𝐹𝑚𝑖 .

The characteristic graphs extract function is used
to extract a subgraph of the graph 𝐺 that contains
characters similar to the characteristic graphs, as
shown in Figures 4 and 5.

Algorithm SiGAT embedding generating algorithm
Input:
1: Signed directed graph 𝐺(𝑉,𝐸, 𝑠)
2: Characteristic graphs list 𝑀
3: Characteristic graphs extract function 𝐹𝑚𝑖; ∀𝑚𝑖 ∈ 𝑀
4: 𝐺𝐴𝑇 − 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝑂𝑅𝑚𝑖 with parameters 𝑊𝑚𝑖 ,𝑎𝑚𝑖 ;
∀𝑚𝑖 ∈ 𝑀
5: Non-linear function Tanh with parameters weight
matrices 𝑊1,𝑊2 and bias 𝑏1 ,𝑏2
Output:
1: Node representation 𝑍𝑢 ,∀𝑢 ∈ 𝑉
Initialization:
1: Iterations 𝑇
2: Batch Size 𝐵
3: ℎ�⃗ 𝑢 ← random(0,1), ∀𝑢 ∈ 𝑉
4: 𝐺𝑚𝑖 ← 𝐹_𝑚𝑖(𝐺), ∀𝑚𝑖 ∈ 𝑀
5: 𝑁𝑚𝑖

(𝑢) ← �𝑣�(𝑢, 𝑣) ∈ 𝐺𝑚𝑖�, ∀𝑚𝑖 ∈ 𝑀, ∀𝑢 ∈ 𝑉
SiGAT:
1: for iteration = 1, . . . ,𝑇 do
2: for batch = 1, . . . , |𝑉|/𝐵 do
3: ℬ ← 𝑉(𝑏𝑎𝑡𝑐ℎ−1)×𝐵+1:𝑏𝑎𝑡𝑐ℎ×𝐵
4: for 𝑢 ∈ 𝐵 do
5: for 𝑚𝑖 in 𝑀 do
6: ℎ𝑚𝑖

′ (𝑢) ← 𝐺𝐴𝑇 − 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝑂𝑅𝑚𝑖��ℎ(𝑣),∀𝑣 ∈ 𝑁𝑚𝑖
(𝑢)��

7: end for
8: ℎ′(𝑢) ← 𝐶𝑂𝑁𝐶𝐴𝑇𝐸𝑁𝐴𝑇𝐸 �ℎ(𝑢),ℎ𝑚1

′ (𝑢), … , ℎ𝑚|𝑀|
′ (𝑢)�

9: 𝑍𝑢 ← 𝑊2 ⋅ 𝑇𝑎𝑛ℎ(𝑊1 ⋅ ℎ′(𝑢) + 𝑏1) + 𝐵2
10: end for
11: end for
12: end for

Figure 4. On the left is an example of graph G, and on the

right is an example of graph characters

Figure 5. Extracting a graph is required for each

graph character. On the left, the graph is extracted
from m1 or m2, and on the right, the graph is extracted

from m3 or m4

 TEM Journal. Volume 13, Issue 2, pages 885-896, ISSN 2217-8309, DOI: 10.18421/TEM132-05, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 889

For each iteration, SiGAT works on a batch in ℬ.
In Figure 6, the operation of nodes in the batch on
SiGAT gives new represented features of nodes in
the batch. In Figure 7, ℎ(𝑢) is fed into aggregators
with 𝑁𝑚𝑖(𝑢) and gives ℎ′���⃗ 𝑚𝑖

(𝑢) back. After that, the
concatenated thing ℎ′���⃗ (𝑢) ∈ ℝ|𝑀|𝐹′+𝐹

P

 is formed from
ℎ′���⃗ 𝑚𝑖

(𝑢) for all 𝑚𝑖 ∈ 𝑀, and ℎ�⃗ (𝑢) is input terms of
the nonlinearity tanh function with parametrized
weight matrices 𝑊1,𝑊2 and bias 𝑏1, 𝑏2.

Figure 6. SiGAT operates on each batch by grouping
nodes of graph G. In the figure, the green batch and

yellow batch are examples of batches that SiGAT operates
on

Figure 7. SiGAT’s operation on the example node-3 in the
green batch

𝐺𝐴𝑇 − 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝑂𝑅𝑚𝑖 is formed by equations

(1), (2), and (3). Subsequently, backward propagation
computes the loss, which is defined as an
unsupervised loss function below.

 𝐽(𝑍𝑢) = −∑ log�𝜎(𝑍𝑢𝑇 𝑍𝑣+)�𝑣+∈𝑁(𝑢)+
 −𝑄∑ log�𝜎(𝑍𝑢𝑇 𝑍𝑣−)�𝑣−∈𝑁(𝑢)− , (4)

where 𝜎 is a sigmoid function that maps real
numbers to the range (0,1), given by the equation
𝑓(𝑥) = 1

1+𝑒−𝑥
 , 𝑥 ∈ ℝ. 𝑁(𝑢)+ is the set of positive

neighbors of node 𝑢, and 𝑁(𝑢)− P

 is the set of negative
neighbors of node 𝑢. The balance parameter 𝑄 is
defined as the ratio of the number of positive
neighbors to the number of negative neighbors, i.e.,
= �𝑁(𝑢)+�

|𝑁(𝑢)−| . This loss function reflects the idea that
“friend embeddings are similar, and enemy
embeddings are dissimilar.”

To decrease the time required for learning in
SiGAT, a proposed framework involves conducting
experiments on diverse characteristic graph lists and
utilizing specific graph datasets to analyze the
properties that impact the SiGAT model. By
examining the effects of various graph characteristics
on the model’s performance, this approach aims to
identify key factors that can improve the learning
process.

3. Diverse Characteristic Graph Lists

Status theory deals with hierarchical relationships,

where individuals or entities can be ranked higher or
lower than others. For this reason, status theory is
particularly suitable for directed graph datasets,
which have sources and sinks that represent the
origins and destinations of these relationships. The
original SiGAT model, which had 38 characteristic
graph lists (SiGAT-38), was revised to incorporate
both status theory and balance theory. However, we
are particularly interested in the characteristic graphs
from the balance theory, which are neither as
complex as SiGAT-38 nor as simple as the two
characteristic graphs from status theory, which
consist of arrowheads pointing in and out without
any sign. In the next section, we will present two
subsections detailing the process of generating
characteristic graph lists and the experimental results
obtained using SiGAT-38 and the generated lists.
Characteristic graph lists are generated from two
concepts, the first of which is based on SiGAT-38’s
undirected concept, and the second one is the base
concept which takes into account the societal
connections within the network.

3.1. Undirected Concept

The Undi(8) graph list is similar to SiGAT-38’s

approach, but with no direction on edges. In this list,
the blue target node i collects orange neighbor nodes
j that have a triad relation with gray nodes. This list
uses both balanced and unbalanced triads so that the
machine can learn from all cases. There are 8
characters in this list, as shown in Figure 8.

 (a) (b) (c) (d)

 (e) (f) (g) (h)

Figure 8. The Undi(8) graph list

 TEM Journal. Volume 13, Issue 2, pages 885-896, ISSN 2217-8309, DOI: 10.18421/TEM132-05, May 2024.

890 TEM Journal – Volume 13 / Number 2 / 2024.

The Undi(6) graph list extends from Undi(8) and
includes gray nodes as neighbors in addition to
orange nodes. In Undi(8), the target node i collects
only orange neighbor nodes j, while Undi(6) also
collects gray nodes as neighbors. In Undi(6), the gray
node is the same as the orange node k in Undi(8), as
shown in Figure 8. Since the triad with the target
node is a symmetrical structure, it can be observed
that the two triads (c) and (e) are similar to (d) and (f)
in Figure 8. Therefore, this list has only 6 characters
instead of 8.

The Undi(8+6) list is a combination of the
Undi(8) and Undi(6) lists. The Undi(8)* list is similar
to the Undi(8) list but includes positive and negative
signs, as shown in Figure 9. The Undi(6)* list is
similar to the Undi(8)* list but based on the Undi(6)
list. The Undi(8+6)* list adds positive and negative
signs to the Undi(8+6) list.

Figure 9. Positive and negative signs

3.2. Base Concept

In the initialization part of the SiGAT algorithm, a

new graph is extracted for each characteristic graph.
This function works by focusing on one node and
finding neighbors of its node that match with the
characteristic graph. After that, it explores like this
with all nodes in the graph. The focused node is
called the target node. SiGAT-38 has a matching
characteristic graph between the target node and its
neighbors. The second concept considers the
matching among only the target’s neighbors.
However, the interested society is only in triad form
that looks like a tetrahedron, where its spire is the
target node and its base is the neighbors. Therefore,
the second concept is called the base concept.

The base list uses balanced and unbalanced triads
to match among the target’s neighbors. However, it
only collects neighbors that construct triad bases
whose sum of signs of edges on the base equals the
possible summation. A positive sign is 1, and a
negative sign is -1. Therefore, the possible
summations of triad bases are 3, 1, -1, and -3, as
shown in Figure 10. There are 4 characteristic graphs
contained in the Bbse list.

Figure 10. The Base list

The fixedBase list collects the neighbors j that
form a triad base as depicted in Figure 11. The signs
of the edges between the neighbors j and the gray
nodes are denoted as s1 and s2, while the sign of the
edge between the two gray nodes is denoted as s3, as
shown in Figure 12. The characteristic graphs are
obtained by considering the values of s1+s2 and s3,
which result in six possible cases: s1+s2 can be 2, 0,
or -2, and s3 can be 1 or -1.

Figure 11. The fixedBase list

Figure 12. The fixedBase concept

The Base-Side1 list represents the characteristic

graph on the base and side of the tetrahedron. It
employs the base characters from the base list and the
side characters from the triad summation of the base
list, resulting in 8 possible characters as shown in
Figure 13.

Figure 13. The Base-Side1 list

Figure 14. The Base-Side2 List

 TEM Journal. Volume 13, Issue 2, pages 885-896, ISSN 2217-8309, DOI: 10.18421/TEM132-05, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 891

The Base-Side2 list also contains the
characteristic graph of the base and side, similar to
Base-Side1. However, the side characters in Base-
Side2 are different. Base-Side1 collects all neighbors
j, regardless of whether they construct base triads. In
contrast, Base-Side2 only collects the neighbors j that
must construct base triads, as shown in Figure 14.

The Base-Side1* and Base-Side2* lists are
similar to Undi(8)* and Undi(6)*, respectively, and
include both positive and negative signs with the
Bas-Side1 list and Base-Side2 list, respectively.

3.3. Illustrated Example: Bitcoin Alpha Dataset

We utilized the Bitcoin Alpha dataset, obtained

from the UCI machine learning repository [2] to
demonstrate our method and compare it with other
datasets. The results of our analysis are summarized
in Table 1. Our findings indicate that SiGAT-38 has
the minimum loss, while base has the least average
time over 102 iterations of learning. Notably, Base-
Side2 has the least time ratio, even though its average
time is not the lowest. We observed that the time
spent on learning is not solely dependent on the
number of characteristic graphs in each list, except
for cases where a list includes characters from
another list. For instance, the Undi(8+6)* list
contains positive and negative signs in addition to the
Undi(8+6) list, resulting in a higher number of
characteristic graphs compared to Undi(8+6). As a
result, the average time for Undi(8+6)* is greater
than that of Undi(8+6). To optimize time spent
during learning, we recommend identifying relevant
characteristic graphs that are specific to the dataset
and using only those for optimal results.

Table 1. The loss and time results of various characteristic
graphs lists’ experiments conducted on Bitcoin Alpha.

Lists Minimum
loss

Average
time

#graphs
in list

Time
ratio

SiGAT-38 1105.76 13.38 38 0.35
Undi(8) 1589.20 5.82 8 0.73
Undi(8)* 1206.94 5.67 10 0.57
Undi(6) 1756.49 5.11 6 0.85
Undi(6)* 1481.30 6.09 8 0.76
Undi(8+6) 1446.06 5.46 10 0.55
Undi(8+6)* 1159.20 10.38 12 0.86
Base 7613.17 1.45 4 0.36
fixedBase 7087.21 1.75 4 0.44
Base-Side1 7266.56 2.14 8 0.27
Base-Side1* 7119.32 2.88 10 0.29
Base-Side2 7286.15 2.12 8 0.27
Base-Side2* 7150.22 2.87 10 0.29

Remark - for binary classification problems with
two classes, positive and negative, the accuracy value
is equivalent to the micro F1-score. This means that
if we have a balanced dataset with equal numbers of
positive and negative samples, the accuracy score
and micro F1-score will be the same. However, in
cases where the dataset is imbalanced, the micro F1-
score may be a better metric for evaluating model
performance than accuracy. This is because the micro
F1-score takes into account both precision and recall,
providing a more balanced evaluation of the model’s
performance. Therefore, in situations where we have
a highly imbalanced dataset, it is important to
consider other evaluation metrics, such as F1-score,
that provide a more comprehensive picture of the
model’s performance.

The Bitcoin Alpha dataset has a pos-ratio of
0.93649, indicating that it is highly imbalanced. This
means that the area under the curve (auc) value
cannot be used as a reliable metric for evaluating the
performance of models trained on this dataset.
Therefore, other metrics such as F1-score of positive
(F1-score(+)), F1-score of negative (F1-score(-)),
macro-F1-score, and micro-F1-score are more
appropriate for evaluating model performance. These
metrics are calculated using the confusion matrix,
which provides information on the model’s ability to
accurately classify positive and negative samples. By
evaluating the model on both macro and micro levels,
we can get a better understanding of the model’s
performance, and we can focus on the performance
of each class using F1-score(+) and F1-score(-).

When analyzing the undirected concept in Table
2, we can see that both Undi(8) and Undi(6)
outperform Undi(8+6). Although Undi(8) and
Undi(6) have similar performance, the macro-F1-
score, micro-F1-score, and F1-score(+) of Undi(6)
are better than those of Undi(8) due to the highly
imbalanced nature of the Bitcoin Alpha dataset. The
performance of classifying negative samples is
higher, resulting in better F1-score(+) and micro F1-
score values for Undi(6). However, Undi(8)
outperforms Undi(6) in terms of F1-score(-).
Moreover, Undi(8)* and Undi(8+6) perform better
than Undi(8) and Undi(8+6), respectively. On the
other hand, Undi(6)* performs worse than Undi(6).
These findings illustrate the importance of choosing
appropriate metrics when evaluating models trained
on imbalanced datasets.

In Table 3, Base-Side2 outperforms fixedBase for
the base concept. Base-Side1* performs better than
the original but not as well as Base-Side2. Base and
Base-Side1 have the lowest F1-score(-) due to their
inability to predict any negative signs correctly.

 TEM Journal. Volume 13, Issue 2, pages 885-896, ISSN 2217-8309, DOI: 10.18421/TEM132-05, May 2024.

892 TEM Journal – Volume 13 / Number 2 / 2024.

This can be seen from the recall(+) value of 1,
indicating that all actual positive signs were predicted
correctly, while the recall(-) value of 0 indicates that
no actual negative signs were predicted. Figure 15
illustrates this situation.

Table 2. The results of analyzing the undirected concept’s
experiments conducted on the Bitcoin Alpha datasets.

Bitcoin Alpha Undi(8) Undi(8)* Undi(6)
precision(+) 0.95 0.96 0.95
precision(-) 0.58 0.60 0.64
recall(+) 0.99 0.99 0.99
recall(-) 0.27 0.32 0.26
F1-score(+) 0.97 0.97 0.97
F1-score(-) 0.37 0.42 0.36
Macro-F1-score 0.67 0.69 0.67
Micro-F1-score 0.94 0.95 0.95
AUC score 0.87 0.89 0.85

Bitcoin Alpha Undi(6)* Undi(8+6) Undi(8+6)*

precision(+) 0.95 0.95 0.94
precision(-) 0.59 0.57 0.95
recall(+) 0.99 0.99 0.57
recall(-) 0.26 0.24 0.26
F1-score(+) 0.97 0.97 0.97
F1-score(-) 0.36 0.33 0.36
Macro-F1-score 0.67 0.65 0.66
Micro-F1-score 0.94 0.94 0.94
AUC score 0.87 0.87 0.88

Next, we focus on four characteristic graph lists:

Undi(8), Undi(6), Base, and fixedBase. While
Undi(8) and Undi(6) demonstrate solid performance,
Undi(8+6) is simply a combination of the two. Both
Base and fixedBase only consider triads in the
neighborhood of the target node, whereas Base-Side1
and Base-Side2 consider triads of the target node and
its neighbors. Comparing these concepts with
SiGAT-38, SiGAT-38 exhibits the best performance.
The undirected concept is closer to SiGAT38 than
the base concept, and the minimum loss of the
undirected concept is also similar to SiGAT-38.
However, the average computation time of the base
concept is much lower than that of SiGAT-38.

Figure 15. A special case where recall(+) equals 1 and
recall(-) equals 0

Table 3. The results of analyzing the base concept’s
experiments conducted on the Bitcoin Alpha datasets

Bitcoin Alpha Base fixedBase Base-S1
precision(+) 0.94 0.94 0.94
precision(-) 0.00 0.33 0.00
recall(+) 1.00 1.00 1.00
recall(-) 0.00 0.01 0.00
F1-score(+) 0.97 0.97 0.97
F1-score(-) 0.00 0.01 0.00
Macro-F1-score 0.48 0.49 0.48
Micro-F1-score 0.94 0.94 0.94
AUC score 0.71 0.74 0.73

Bitcoin Alpha Base-S1* Base-S2 Base-S2*

precision(+) 0.94 0.94 0.94
precision(-) 0.63 0.60 0.00
recall(+) 1.00 1.00 1.00
recall(-) 0.02 0.01 0.00
F1-score(+) 0.97 0.97 0.97
F1-score(-) 0.03 0.02 0.00
Macro-F1-score 0.50 0.49 0.48
Micro-F1-score 0.94 0.94 0.94
AUC score 0.74 0.75 0.71

4. Specific Graphs Datasets

It is not possible to develop an approach that can
solve or learn all the various properties of datasets.
Therefore, this section focuses on specific graph
datasets that we have generated to evaluate the
SiGAT model using interesting characteristic graph
lists. In the previous section, four characteristic graph
lists were discussed, namely Undi(8), Undi(6), Base,
and fixedBase. However, for this section, we are
interested in two characteristic graph lists, namely
Undi(8) and fixedBase. The reason for this is that
these two lists only collect the neighbors of a target
node once for each target’s neighbor finding, which
is different from Undi(6) and Base.

In the next subsections, we divide the generated
graphs used for experimentation into three groups.
All generated graphs are in the signed directed
domain for experimentation, and the models ignore
the directions of nodes on edges for undirected
graphs, except for the SiGAT-38 indicator.

4.1. Random Graphs

The random graph group refers to graphs
generated with random edges, signs, and directions.
Within this group, we created four datasets: graph1,
graph2, graph1+2, and graph3.

 TEM Journal. Volume 13, Issue 2, pages 885-896, ISSN 2217-8309, DOI: 10.18421/TEM132-05, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 893

Graph1 contains 1,632 nodes and 8,260 edges,
created as a connected component graph, similar to
graph2, which has 1,648 nodes and 8,444 edges.
Graph1+2 is a combination of graph1 and graph2,
resulting in a graph with 3,280 nodes, 16,704 edges,
and two connected components. Graph3 is also a
combination of graph1 and graph2 but with an
additional edge to link the components. This results
in a graph with 3,281 nodes and 16,705 edges.

As the graphs used in this study are randomly
generated, it resulted in the loss of extracted graphs
on fixedBase. These generated graphs lack the
characteristics of fixedBase’s characteristic graphs,
which means that no experiments could be conducted
on fixedBase.

Regarding Table 4, the minimum loss of graph1,
graph1+2, and graph3 are likely decreasing in that
order. This is interesting because graph1 is a part of
graph1+2 and graph3, yet the minimum loss of these
two graphs is less than graph1’s loss. The minimum
loss of Undi(8) increases from SiGAT-38, while the
time spent on Undi(8) decreases. The average time
spent is rising with the graph1, graph3, and graph3
sequences. For graph1+2 and graph3, which have a
different part consisting of only one edge, the
difference in average time is larger than the
difference in the part. It is necessary to evaluate the
values, such as AUC and F1-score, as they are
around 0.5. This means that the SiGAT-38 and
Undi(8) models cannot classify the signs of edges,
and hence, they are not effective.

Table 4. The loss and time results of random graph’s
experiments conducted on Bitcoin Alpha

Loss minimum
Dataset SiGAT–38 Undi(8) fixedBase

Graph1 88.15 2435.80 -
Graph1+2 62.01 872.55 -
Graph3 62.08 872.51 -

Time average
Dataset SiGAT–38 Undi(8) fixedBase

Graph1 4.95 3.11 -
Graph1+2 20.74 7.46 -
Graph3 19.16 9.10 -

4.2. Triangle Component Graph

The triangle component graph is created to check
the effect of the number of connected components on
the graph. This group is created by connecting
triangles to construct connected components, where
all the characteristic graphs are triangles. We
generate these graphs to determine the extent to
which the number of triangles affects the models.

We generated graph-c(n), which has around 2,500
nodes and 8,500 edges for n in {1,2,3,4,5}. However,
the evaluation values for these graphs are
approximately 0.5, similar to the random graph,
indicating that the models are unclassified. To test on
larger graphs, we generate graph-c2(n), which has
3,000 nodes and approximately 62,500 edges, but the
evaluation values are still around 0.5. We observe
that the minimum loss of graph-c(n) and graph-c2(n)
increases for Undi(8) when compare with SiGAT-38,
but decrease for fixedBase. The results presented in
Table 5 indicate that the average time is consistently
the best for fixedBase, followed by Undi(8) and
SiGAT-38. However, the primary purpose of
generating these graphs is to check the effect of the
number of connected components and the number of
triangles, but the effect of the number of connected
components is not evident. Furthermore, the effect of
the number of triangles involves time spent since
there are more nodes and neighbors to consider.

Table 5. The loss and time results of graph-c(n) and
graph-c2(n) experiments conducted on Bitcoin Alpha

Minimum loss
Dataset SiGAT–38 Undi(8) fixedBase

Graph-c(1) 39.83 121.25 0.69
Graph–c(2) 39.83 114.66 3.11
Graph–c(3) 33.72 113.65 9.84
Graph–c(4) 67.25 149.27 14.03
Graph–c(5) 145.16 200.16 52.48
Graph–c2(1) 21976.22 45043.43 356.67
Graph–c2(2) 19031.85 43311.19 864.20
Graph–c2(3) 18665.73 43198.74 2136.00
Graph–c2(4) 19568.09 43978.39 3579.60
Graph–c2(5) 18088.79 42866.53 6440.54

Average time

Dataset SiGAT–38 Undi(8) fixedBase
Graph–c(1) 13.02 5.84 0.23
Graph–c(2) 13.02 4.43 0.47
Graph–c(3) 11.35 5.12 0.56
Graph–c(4) 11.77 4.83 0.52
Graph–c(5) 11.00 5.53 0.56
Graph–c2(1) 24.22 9.41 1.07
Graph–c2(2) 24.15 9.49 1.64
Graph–c2(3) 23.28 9.58 2.55
Graph–c2(4) 24.67 9.84 3.44
Graph–c2(5) 36.69 9.58 4.82

We also generate graph-c-p0.8(n) to simulate the

imbalance of Bitcoin Alpha. The positive probability
is set to 0.8.

 TEM Journal. Volume 13, Issue 2, pages 885-896, ISSN 2217-8309, DOI: 10.18421/TEM132-05, May 2024.

894 TEM Journal – Volume 13 / Number 2 / 2024.

The results presented in Table 6 indicate that that
the minimum loss and average time were similar to
graph-c(n) and graph-c2(n), but the evaluation values
are weird, with a high F1-score(+) and a low F1-
score(-) for SiGAT-38 and Undi(8), and zero for
fixedBase because the model has no negative
predictions, as observed in the Bitcoin Alpha
experiment. To address this issue, we generate graph-
c-p0.8(n)* by removing the edge with the same
nodes tuple. For instance, if edge e1 goes from node a
to node b with a positive sign, and edge e2 goes from
node b to node a, with a negative sign, we cut one of
them. Consequently, graph-c-p0.8(n)* has no same
nodes tuple of edges. The data presented in Table 5
suggests that the F1-score(-) is likely to be higher
than the original, resulting in an increase in the AUC
score to around 0.7 for both SiGAT-38 and Undi(8).
However, for fixedBase, only components 4 and 5
have characteristics, resulting in the graph having
only 4 and 5 components. Similar to graph-c-p0.8(n),
it does not classify the negative class.

Table 6. The loss and time results of graph-c-p0.8(n) and
graph-c-p0.8*(n) experiments conducted on Bitcoin Alpha

Minimum loss
Dataset SiGAT–38 Undi(8) fixedBase

Graph–c-p0.8(1) 25.27 81.53 14.25
Graph–c-p0.8(2) 36.22 101.69 20.25
Graph–c-p0.8(3) 40.20 98.03 17.24
Graph–c-p0.8(4) 79.06 139.55 57.47
Graph–c-p0.8(5) 65.23 135.37 45.48
Graph–c-p0.8*(1) 14.34 80.12 -
Graph–c-p0.8*(2) 13.94 77.06 -
Graph–c-p0.8*(3) 15.12 75.57 -
Graph–c-p0.8*(4) 25.24 68.40 5.61
Graph–c-p0.8*(5) 15.47 80.02 11.81

Average time

Dataset SiGAT–38 Undi(8) fixedBase
Graph–c-p0.8(1) 10.81 10.81 0.50
Graph–c-p0.8(2) 9.93 4.26 0.49
Graph–c-p0.8(3) 9.94 4.28 0.52
Graph–c-p0.8(4) 11.43 4.27 0.55
Graph–c-p0.8(5) 10.78 6.31 0.51
Graph–c-p0.8*(1) 10.60 4.12 -
Graph–c-p0.8*(2) 9.91 4.13 -
Graph–c-p0.8*(3) 9.85 4.53 -
Graph–c-p0.8*(4) 12.50 4.37 0.19
Graph–c-p0.8*(5) 10.60 4.67 0.42

4.3. Tree Graph

In our experimentation with planar graph datasets,
we specifically focused on trees. A planar graph is a
graph that can be embedded in the plane without any
edges crossing each other. A tree is an undirected
graph that is connected and acyclic, which means it
contains no cycles (loops). We generate two tree
datasets: tree-d2 and tree-d10, each consisting of
3,000 nodes and 2,999 edges. The tree-d2 dataset is a
tree where each node has a degree of at most 2, while
the tree-d10 dataset has a degree of at most 10. In
this study, the degree is defined as the combination
of in-degree and out-degree.

However, since trees are connected graphs that
contain no cycles, Undi(8) and fixedBase models are
not able to learn these graph structures. On the other
hand, for the SiGAT-38 model, we use only six non-
triad characters, named SiGAT-38*, (Table 7).
Although the results are not shown, the model is able
to learn the tree structures effectively, indicating its
potential for learning complex planar graphs.

Table 7. The loss and time results of tree-d2 and tree-d10
experiments conducted on Bitcoin Alpha

SiGAT-38* Minimum loss Average time
tree-d2 2.74 3.21
tree-d10 2.80 3.02

5. Subgraph-based Learning Approach

In this part, we aim to improve the performance
of our model on the Bitcoin Alpha dataset by using a
new training and testing approach. Specifically, we
focus on a subgraph-based learning strategy where
we extract a subgraph from a larger graph, which is
simulated from the Bitcoin Alpha dataset, by
identifying a domination set. A domination set is a
subset of vertices in a graph such that each vertex in
the graph is either a part of the subset or adjacent to a
vertex in the subset. Dominating sets are important in
graph theory because they can be used to model a
variety of real-world problems, such as facility
location, sensor placement, and network routing. The
domination number of a graph is the minimum size
of a dominating set for the graph. Finding the
domination number is an NP-hard problem.

By constructing a subgraph from the domination
set, we can simplify the original graph while
preserving its structural properties. This allows us to
train and test our model on a smaller and more
manageable subgraph, which can improve the
efficiency and accuracy of our approach.

Overall, we expect this new subgraph-based
learning approach to yield better results on the
Bitcoin Alpha dataset than previous methods. To
extract the subgraph, we first determine the
domination number of the graph, which in this case is
1,706. Then the nodes are ranked in the graph by

 TEM Journal. Volume 13, Issue 2, pages 885-896, ISSN 2217-8309, DOI: 10.18421/TEM132-05, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 895

their degree and the top nodes and their neighbors are
selected to form the first subgraph, which we refer to
as subgraph1. This subgraph contains a total of 3,623
nodes, which is close to the size of the original
Bitcoin Alpha graph, which has 3,783 nodes. We
then split subgraph1 into training and testing sets,
with the testing set consisting of the difference
between the Bitcoin Alpha graph and subgraph1.
This allows us to evaluate the performance of our
model on the remaining nodes in the graph. The
resulting dataset is called Bitcoin Alpha 2, and the
training set accounts for 80% of the total data.

However, in order to further improve the
efficiency and accuracy of our model, we extract
another subgraph called subgraph2. This subgraph
contains nodes with a degree of less than 100 and
their neighbors. We split subgraph2 into training and
testing sets, with the testing set again consisting of
the difference between the Bitcoin Alpha graph and
subgraph2. The resulting dataset is called Bitcoin
Alpha 3, and the training set accounts for 70% of the
total data.

By using subgraph-based learning on these new
datasets, we aim to better understand the underlying
structure of the Bitcoin Alpha graph and improve the
accuracy of our model. The use of multiple
subgraphs with different node selection criteria can
provide insights into which nodes and edges are most
important for predicting node behavior, and can help
us to develop more efficient and accurate machine
learning algorithms for graph data.

The experimental results presented in Tables 8
and 9 show that the Bitcoin Alpha 2 dataset
outperforms subgraph2 in terms of prediction
accuracy, although this comes at the cost of increased
time spent on training and testing the model. The
Bitcoin Alpha 2 dataset contains 23,996 edges, which
is comparable to the number of edges in the original
Bitcoin Alpha dataset, which has 24,186 edges. In
contrast, the Bitcoin Alpha 3 dataset has only 20,344
edges, which may explain its relatively poor
performance. The lower number of edges, combined
with the smaller percentage of nodes in the training
set, may have resulted in insufficient information for
the model to accurately predict node behavior.
Overall, these results suggest that the choice of
subgraph and its size can have a significant impact
on the performance of machine learning algorithms
for graph data, and highlight the importance of
carefully selecting appropriate subgraphs for training
and testing.

Table 8. The loss and time results of experiments
conducted on Bitcoin Alpha 2 and Bitcoin Alpha 3

SiGAT–38 Minimum loss Average time
Bitcoin Alpha 2 1002.89 13.50
Bitcoin Alpha 3 898.72 8.27

Table 9. The results of analyzing experiments conducted
on Bitcoin Alpha 2 and Bitcoin Alpha 3

SiGAT–38 Bitcoin
Alpha 2

Bitcoin
Alpha 3

pos-ratio(test) 0.94 0.94
accuracy 0.95 0.95
precision(+) 0.96 0.96
precision(-) 0.68 0.66
recall(+) 0.99 0.99
recall(-) 0.36 0.30
F1-score(+) 0.97 0.98
F1-score(-) 0.47 0.42
Macro-F1-score 0.72 0.70
Micro-F1-score 0.95 0.95
AUC score 0.93 0.88

6. Conclusion and Discussion

SiGAT is a model that embeds nodes on a graph
to learn tasks on graphs. This study focuses on linked
prediction. Initial experiments on Bitcoin Alpha
using various characteristic graph lists demonstrate
that the number of graph characters is not relevant to
the time spent on the SiGAT model. However,
characteristic graph lists in an undirected concept
provide evaluation results close to those of SiGAT-
38, and they require only one third of the learning
time. They are a good choice for further study on
other tasks. Additionally, characteristic graph lists in
a base concept have a time spent around one sixth of
SiGAT-38 or one half of the undirected concept,
even though their evaluating values are lower than
the undirected concept. Users can weigh their
advantages, performance, or time spent.
Next, a dataset is generated to test on chosen lists.
Since the time spent is not relevant to the number of
graphs in the list, it is assumed to be related to the
number of neighbors on each graph in the list for
each target node. Therefore, Undi(8) and fixedBase,
which have good performance, are chosen. They only
pick one neighbor for each target’s exploration.

There are three groups of graphs to test on
SiGAT-38, Undi(8), and fixedBase. Firstly, these
models cannot classify signs on edges of random
graphs. Secondly, testing is performed on triangle
component graphs since most characters in the lists
are in triangle form, and the effect of the number of
components is checked.

Similarly, the models cannot classify on a triangle
component graph. Next, the interest is in planar
graphs. A tree graph is one of the planar graphs.
Since a tree has no cycle, it can only learn on non-
triad of SiGAT-38 called SiGAT-38*. Once again,
the models cannot classify on a tree.

 TEM Journal. Volume 13, Issue 2, pages 885-896, ISSN 2217-8309, DOI: 10.18421/TEM132-05, May 2024.

896 TEM Journal – Volume 13 / Number 2 / 2024.

Furthermore, we perform experiments on new
splitting dataset. Bitcoin Alpha is split into a new
training and testing set to be learned. The new
datasets involve the domination number and the
addition of in-degree and out-degree of nodes.
Datasets from the domination number have better
performance than the original Bitcoin Alpha. In
conclusion, SiGAT is a powerful concept in graph
neural networks that has the potential to provide a
more accurate representation of real-world
phenomena. While SiGAT has some limitations,
researchers continue to explore its potential
applications and improve its performance. This study
provides valuable insights into SiGAT’s
effectiveness on linked prediction tasks and various
graph structures. The results suggest that undirected
characteristic graphs with fewer learning times are
suitable for extended studying of other tasks. We
recommend further studies on the effect of nodes that
are neighbor’s any target on the same characters and
properties of features.

Acknowledgements

The authors would like to thank the academic editors
and reviewers for their comments and suggestions on the
manuscript. This work was financially supported by Office
of the Permanent Secretary, Ministry of Higher Education,
Science, Research and Innovation (Grant No. RGNS 63-
174).

References:

[1]. Arinik, N., Figueiredo, R., & Labatut, V. (2018).
Signed graph analysis for the interpretation of voting
behavior. arXiv preprint, arXiv:1712.10157.

[2]. Atwood, J. & Towsley, D. (2016). Diffusion
convolutional neural networks. Advances in Neural
Information Processing Systems, 29, 1993–2001.

[3]. Bagheri, M., Valipour, M., & Amin, V. (2012). The
bankruptcy prediction in tehran share holding using
neural network and its comparison with logistic
regression. Journal of Mathematics and Computer
Science, 5, 219–228.

[4]. Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M.,
Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R.,
Gulcehre, C., Song, F., Ballard, A., Gilmer, J., Dahl,
G., Vaswani, A., Allen, K., Nash, C., Langston, V.,
Dyer, C., Heess, N., Wierstra, D., Kohli, P.,
Botvinick, M., Vinyals, O., Li, Y., & Pascanu, R.
(2018). Relational inductive biases, deep learning,
and graph networks, arXiv preprint,
arXiv:1806.01261.

[5]. Derr, T., Ma, Y., & Tang, J. (2018). Signed graph
convolutional network. arXiv preprint,
arXiv:1808.06354.

[6]. Ghezelbash, A. (2012). Predicting changes in stock
index and gold prices to neural network
approach. The Journal of mathematics and computer
science, 4(2), 227-236.

[7]. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals,
O., & Dahl, G. E. (2017). Neural message passing for
quantum chemistry. In International conference on
machine learning, 1263-1272. PMLR.

[8]. Gori, M., Monfardini, G., & Scarselli, F. (2005). A
new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005, 2, 729-734.
IEEE.

[9]. Hamilton, W., Ying, Z., & Leskovec, J. (2017).
Inductive representation learning on large
graphs. Advances in neural information processing
systems, 30.

[10]. Heider, F. (1946). Attitudes and cognitive
organization. The Journal of psychology, 21(1), 107-
112.

[11]. Honarmand, M., Sanjari, E., & Badihi, H. (2014).
Prediction of saturated vapor pressures using non-
linear equations and artificial neural network
approach. Journal of Mathematics and computer
science, 8, 343-358.

[12]. Huang, J., Shen, H., Hou, L., & Cheng, X. (2019).
Signed graph attention networks. In Artificial Neural
Networks and Machine Learning–ICANN 2019:
Workshop and Special Sessions: 28th International
Conference on Artificial Neural Networks, Munich,
Germany, September 17–19, 2019, Proceedings 28,
566-577. Springer International Publishing.

[13]. Jiang, J., Dun, C., Huang, T., & Lu, Z. (2018). Graph
convolutional reinforcement learning. arXiv preprint
arXiv:1810.09202.

[14]. Kipf, T. N., & Welling, M. (2016). Semi-supervised
classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

[15]. Kumar, S., Spezzano, F., Subrahmanian, V. S., &
Faloutsos, C. (2016). Edge weight prediction in
weighted signed networks. In 2016 IEEE 16th
International Conference on Data Mining (ICDM),
221-230. IEEE.

[16]. Nie, M., Chen, D., & Wang, D. (2023).
Reinforcement learning on graphs: A survey. IEEE
Transactions on Emerging Topics in Computational
Intelligence.

[17]. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner,
M., & Monfardini, G. (2008). The graph neural
network model. IEEE transactions on neural
networks, 20(1), 61-80.

[18]. Sotoudeh, M., & Farshad, E. (2012). Application of
neural network for forecasting gas price in America. J
Math Comp Sci, 4(2), 216-226.

[19]. Tang, J., Lou, T., & Kleinberg, J. (2012). Inferring
social ties across heterogenous networks.
In Proceedings of the fifth ACM international
conference on Web search and data mining, 743-752.

[20]. Veličković, P., Cucurull, G., Casanova, A., Romero,
A., Lio, P., & Bengio, Y. (2017). Graph attention
networks. arXiv preprint arXiv:1710.10903.

[21]. Zhang, K., Pan, L., & Liu, S. (2023). A rating
prediction model with cross projection and evolving
GCN for bitcoin trading network. Personal and
Ubiquitous Computing, 27(4), 1561-1571.

	2.2.2. SiGAT Process
	4: for 𝑢∈𝐵 do
	5: for ,𝑚-𝑖. in 𝑀 do
	7: end for
	10: end for
	11: end for
	12: end for
	3.1. Undirected Concept
	3.2. Base Concept
	3.3. Illustrated Example: Bitcoin Alpha Dataset
	4.2. Triangle Component Graph
	4.3. Tree Graph
	Acknowledgements
	References:

