
TEM Journal. Volume 13, Issue 2, pages 885-896, ISSN 2217-8309, DOI: 10.18421/TEM132-05, May 2024. 

TEM Journal – Volume 13 / Number  2 / 2024.   885 

Enhancing Signed Graph Attention Network 
by Graph Characteristics: An Analysis 

Panatda Kaewhit P

1
P, Chanun Lewchalermvongs P

1
P, Phakaporn Lewchalermvongs P

2 

P

1 
PDepartment of Mathematics, Faculty of Science, Mahidol University, Bangkok, Thailand 

P

2 
PMahidol University, Nakhon Pathom, Thailand 

Abstract – A graph neural network (GNN) is one of 
successful methods for handling tasks on a graph data 
structure, e.g. node embedding, link prediction and 
node classification. GNNs focus on a graph data 
structure that must aggregate messages on nodes in the 
graph to retain a graph-structured information in new 
node’s message and proceed tasks on a graph. One of 
modifications on the propagation step in GNNs by 
adopting attention mechanism is a graph attention 
network (GAT). Applying this modification to signed 
graphs generated by sociological theories is called 
signed graph attention network (SiGAT). In this 
research, we utilize SiGAT and create novel graphs 
using graph characters to assess the performance of 
SiGAT models embedded in nodes across various 
characteristic graphs. The primary focus of our study 
was linked prediction, which aligns with the task 
employed in the previous research on SiGAT. We 
propose a method using graph characteristics to 
improve the time spent on the learning process in 
SiGAT.  
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1. Introduction

A graph is a discrete structure that comprises 
vertices (also known as nodes) and edges that 
connect these vertices. Graph models can be used to 
solve problems in various disciplines since they can 
represent complex data as graphs of relationships 
between objects. A graph neural network (GNN) is a 
type of artificial neural network (ANN) that applies 
ANNs to graphs. The power of GNNs in modelling 
the dependencies between nodes in a graph has 
resulted in breakthroughs in research related to graph 
analysis. Recently, GNNs have been adapted with the 
attention mechanism to weight node features in the 
aggregating task, leading to the creation of graph 
attention networks (GATs). Unlike general weighting 
of neural networks, GATs use self-attention, which 
weights the nodes’ features.  

To address the limitations of GATs in handling 
signed graphs, which are graphs with positive and 
negative edges, signed graph attention networks 
(SiGATs) were developed by incorporating graph 
characters generated by sociological theories such as 
balance theory and status theory. SiGAT is a variant 
of graph convolutional networks that incorporates 
attention mechanisms, enabling it to selectively 
attend to positive or negative edges in signed graphs. 
SiGAT is a relatively new concept in GNN that has 
gained popularity in recent years. While SiGAT has 
shown great promise in various applications, it is not 
without limitations. One of the main limitations of 
SiGAT is its sensitivity to the graph structure. SiGAT 
performs well when the graph is fully connected, but 
its performance degrades as the sparsity of the graph 
increases. Additionally, SiGAT can be 
computationally expensive, especially for large 
graphs. Graph characteristics are important in GNNs 
because they provide valuable information about the 
structure and properties of the graph. GNNs are 
designed to operate on graph-structured data, where 
the nodes and edges represent entities and 
relationships between them.  
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By considering graph characteristics, GNNs can 
effectively leverage the inherent structure of the 
graph to perform various tasks, such as node 
classification, link prediction, and graph-level 
prediction [4], [9]. A subgraph is a smaller graph that 
is formed by selecting a subset of the vertices and 
edges from a larger graph. In other words, a subgraph 
is a graph that can be obtained from another graph by 
deleting some of its vertices and edges. The subgraph 
retains the structure and properties of the original 
graph, but may have fewer vertices and edges. A 
subgraph can be used to analyze a specific subset of a 
graph, or to simplify a graph by removing some of its 
complexity. Subgraphs are an important concept in 
graph theory and are used in many applications such 
as network analysis, data mining, and social network 
analysis. Subgraphs provide a localized view of the 
graph by focusing on a subset of nodes and edges. 
GNNs operate on these subgraphs, enabling them to 
capture local information and dependencies. By 
considering subgraphs, GNNs can leverage the 
neighborhood information around each node, 
allowing for localized information propagation and 
learning. Working with the entire graph can be 
computationally expensive, especially for large-scale 
graphs. Subgraphs provide a way to reduce the 
computational complexity by considering only a 
subset of the graph. This allows GNNs to scale to 
larger graphs and makes training and inference more 
efficient. In this study, we employed SiGAT and 
generated new graphs using graph characters to 
evaluate the node-embedded performance of SiGAT 
models across different characteristic graphs. We 
used the characteristic graph list from a previous 
study in [12] and the Bitcoin Alpha dataset [15], [21] 
to evaluate SiGAT’s performance. We also generated 
a new characteristic graph list based on balance 
theory to assess the time spent on the models. 
Finally, we created new datasets to train the balance-
theory-generated models to examine the types of 
graphs suitable for SiGAT models and to confirm the 
performance of characteristic graph lists. Our main 
task was linked prediction, which is the same task 
used in the previous study on SiGAT. 

The remainder of this article is organized as 
follows. The related work and background are 
discussed in Section 2. The proposed methods and 
illustrated examples are presented in Sections 3, 4 
and 5. Finally, we conclude and discuss future work 
in Section 6. 

 
2. Preliminaries 
 

ANNs are computational systems inspired by 
biological neural networks, closely resembling the 
human brain's operations, and excel in various 
problem-solving tasks.  

They utilize a directed graph structure with nodes 
representing neurons and edges denoting 
connections. Nodes are organized into input, hidden, 
and output layers, facilitating data flow. ANNs 
operate through interconnected units that simulate 
neural signal transmission. The perceptron, the basic 
unit, has evolved into the multi-layer perceptron to 
address computational limitations. Forward and 
backward propagation processes are inspired by 
biological neural networks' action potentials, 
facilitating learning. ANNs have proven effective in 
various domains, such as estimating vapor pressures, 
stock price analysis, gas price forecasting, and 
bankruptcy prediction, highlighting their versatility 
and accuracy in different applications [11], [6], [18], 
[3]. GNNs, a subset of ANNs, are designed for graph 
data. Adapting them to diverse graph types is a 
current challenge. GNNs use message-passing 
models to aggregate node information, making them 
suitable for tasks like link prediction and 
classification. The concept was initially introduced 
by Gori [8] and Scarselli [17]. Different aggregation 
methods have led to various GNN models, including 
the influential Graph Convolutional Network (GCN) 
by Kipf and Welling in 2017 [14]. GCN applies 
spectral graph theory to perform convolutions on 
graph-structured data, capturing both local and global 
information. Extensions like GAT [20] and diffusion 
convolutional neural network (DCNN) [2] have 
followed. GNNs have practical applications in fields 
like quantum chemistry and reinforcement learning 
[7], [13], [16]. However, challenges remain regarding 
expressiveness, efficiency, and model robustness. 

 
2.1. Graph Attention Network 

 
A GAT, introduced by Velickovic et al. [7], is a 

model that leverages the attention mechanism to 
perform graph aggregation. While attention is 
typically used in artificial neural networks to assign 
weights to the inputs, GATs utilize self-attention, 
which assigns weights to the feature elements of each 
node based on their importance. By doing so, the self-
attention mechanism helps to identify the most 
relevant features of each node, which can be used for 
downstream tasks such as classification or regression. 

In a GAT, the input data for each node is 
represented as a vector h�⃗ i ∈ ℝF, where F is the 
number of features. The goal of the GAT is to 
aggregate this input data in a way that captures 
important relationships between nodes. This is done 
by computing a new feature vector h′���⃗ i ∈ ℝF′ for each 
node i = {1,2, . . . , N}, where F′ is the number of new 
features after aggregation. The aggregation process 
involves a linear transformation parametrized by a 
weight matrix W ∈ ℝF′×F′, followed by an attention 
operation.  
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The attention operation assigns weights to each of 
the neighboring nodes, based on the relevance of 
their features to the target node. Finally, the 
aggregated features are smoothed by an activation 
function σ, which adds non-linearity to the model. 
Equation 1 represents an aggregation function that 
combines features of all neighboring nodes j of a 
given node i, where Ni is the neighbors of node i. 

 
h′���⃗ i = σ�∑ αijWh�⃗ jj∈Ni �  (1) 

 

αij = softmaxj�eij� = exp�eij�
∑ exp�eij��j∈Ni�

  (2) 

 
eij = LeakyReLU� a�⃗ T[Wh�⃗ i||Wh�⃗ j]�  (3) 

 
This aggregation process involves a linear 
transformation, parameterized by the weight matrix 
W ∈ ℝF′×F′, and an attention mechanism based on 
αij. The output of this aggregation is then smoothed 
by an activation function σ. 

In Equation 3, the attention mechanism a�⃗ T P

 acts as 
the coefficient of the LeakyReLU function. This 
means that the alignment model score eij R is 
influenced by the vector element obtained by 
concatenating the transformed feature vectors h�⃗ i and 

h�⃗ j. The LeakyReLU nonlinearity function is an 
activation function that applies the rectified linear 
unit (ReLU) function with a negative slope (Figure 
1). Finally, to prepare for the aggregation step as in 
Equation 2, the alignment model score eij R is 
normalized using the softmax function to obtain αij. 

 

 
Figure 1. The left is ReLU function and the right is 

LeakyReLU function 
 

2.2. Signed Graph Attention Network 
 

Signed graph attention network (SiGAT) is a type 
of graph neural network that has been gaining 
attention in recent years. SiGAT is a variant of graph 
convolutional networks that incorporates attention 
mechanisms, enabling it to selectively attend to 
positive or negative edges in signed graphs. 

One of the earliest works on SiGAT was proposed 
by Derr et al. [5].  

 

The authors introduced SiGAT, which is a graph 
convolutional network that uses both node-level and 
edge-level attention mechanisms. The node level 
attention mechanism enables SiGAT to selectively 
attend to positive or negative nodes, while the edge-
level attention mechanism enables it to selectively 
attend to positive or negative edges. The authors also 
proposed a graph diffusion process to enable SiGAT 
to learn from multi-hop graph structures. In 2019, 
Huang et al. [12] proposed a modified SiGAT 
architecture that uses both global and local attention 
mechanisms. The global attention mechanism 
considers all the nodes and edges in the graph, while 
the local attention mechanism focuses only on the 
immediate neighbors of each node. The authors also 
introduced a signed diffusion process to enable 
SiGAT to learn from multi-hop graph structures. 
SiGAT has been applied to various real-world 
applications, including sentiment analysis, 
recommendation systems, and fraud detection. 
Signed graphs have been utilized to model and 
interpreted voting patterns [1]. The signed graph 
analysis is valuable in interpreting voting behavior. 
In the following sections, we will provide a detailed 
explanation of how GAT operates with characteristic 
graphs. 

 
2.2.1.  Balance Theory and Status Theory 

 
SiGAT utilizes sociological theories, such as 

balance and status theories, to create a characteristic 
graph for its operations. The status theory establishes 
a directed relationship between objects (nodes), with 
one object being higher or lower than the other. Since 
SiGAT operates within a signed graph domain, the 
status is labeled as positive or negative. For instance, 
a positive relation between object A and object B 
means that B has a higher positive status than A. 
Conversely, a negative relation of object A to object 
B means that B has a higher negative status than A. 
In the second row of Figure 2, all triads satisfy the 
status theory by fulfilling “status(j) > status(i)” and 
“status(k) > status(j)”, resulting in “status(k) > 
status(i)” and forming a complete circle triad. All 
status triads in Figure 2 are combinations of balance 
triads, which are further elaborated below. Balance 
theory, which originated in social psychology during 
the mid-20th century, was initially developed as a 
model for undirected signed networks [10]. 
According to the balance theory, a triad in an 
undirected signed network is considered balanced 
when all signs within the triad are positive or when 
only one sign is positive, and the others are negative. 
Suppose a positive refers to a friendship relationship 
and a negative refers to an enemy relationship.  
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Then the first two triads in the first row of Figure 
2 can be described as “the friend of my friend is my 
friend” and “the enemy of my enemy is my friend,” 
respectively. These two relationships are considered 
balanced. Conversely, the last two triads in the first 
row of Figure 2 are unbalanced. 

 

 
 

Figure 2. All triads in the first row are balance triads and 
all triads in the second row are status triads [12] 

 
SiGAT leverages the balance and status theories 

to generate characteristic graphs in its method. There 
are 38 characteristic graphs, which are shown in 
Figure 3. 

 
 

Figure 3. The 38 characteristic graphs in SiGAT [12] 
 

2.2.2.  SiGAT Process 
 
Let 𝐺(𝑉,𝐸, 𝑠) be a signed directed graph, let 

ℎ�⃗ 𝑚𝑖
(𝑢) ∈ ℝ𝐹 be the feature vector of a node 𝑢 ∈ 𝑉, 

and let ℎ′���⃗ 𝑚𝑖
(𝑢) ∈ ℝ𝐹′ be the new feature vector of 𝑢 

after aggregation, where 𝐹 is the number of features 
and 𝐹′ is the number of new features after 
aggregation according to each characteristic graph in 
the list 𝑀 and 𝑖 ∈ {1,2, … , |𝑀|}. The SiGAT 
algorithm is shown below. The SiGAT algorithm is 
an algorithm that embeds the node 𝑢 ∈ 𝑉 of 
𝐺(𝑉,𝐸, 𝑠) into a representation 𝑍𝑢. This purpose is 
inherited from GAT. The starting section explains the 
characteristic graphs involved in the method, which 
is different from GAT. The characteristic graphs 
𝑚𝑖 ∈ 𝑀 are generated and fed into the characteristics 
graph extract function 𝐹𝑚𝑖 .  

 

The characteristic graphs extract function is used 
to extract a subgraph of the graph 𝐺 that contains 
characters similar to the characteristic graphs, as 
shown in Figures 4 and 5. 

 

Algorithm SiGAT embedding generating algorithm  
Input:   
1: Signed directed graph 𝐺(𝑉,𝐸, 𝑠) 
2: Characteristic graphs list 𝑀 
3: Characteristic graphs extract function 𝐹𝑚𝑖; ∀𝑚𝑖 ∈ 𝑀 
4: 𝐺𝐴𝑇 − 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝑂𝑅𝑚𝑖   with parameters 𝑊𝑚𝑖  ,𝑎𝑚𝑖 ; 
∀𝑚𝑖 ∈ 𝑀 
5: Non-linear function Tanh with parameters weight 
matrices 𝑊1,𝑊2 and bias 𝑏1 ,𝑏2  
Output: 
1: Node representation 𝑍𝑢 ,∀𝑢 ∈ 𝑉 
Initialization: 
1: Iterations 𝑇 
2: Batch Size 𝐵 
3: ℎ�⃗ 𝑢 ← random(0,1), ∀𝑢 ∈ 𝑉 
4: 𝐺𝑚𝑖 ← 𝐹_𝑚𝑖(𝐺), ∀𝑚𝑖 ∈ 𝑀 
5: 𝑁𝑚𝑖

(𝑢) ← �𝑣�(𝑢, 𝑣) ∈ 𝐺𝑚𝑖�, ∀𝑚𝑖 ∈ 𝑀, ∀𝑢 ∈ 𝑉  
SiGAT: 
1: for iteration = 1, . . . ,𝑇 do  
2: for batch = 1, . . . , |𝑉|/𝐵  do 
3: ℬ ← 𝑉(𝑏𝑎𝑡𝑐ℎ−1)×𝐵+1:𝑏𝑎𝑡𝑐ℎ×𝐵 
4: for 𝑢 ∈ 𝐵 do  
5: for 𝑚𝑖 in 𝑀 do 
6: ℎ𝑚𝑖

′ (𝑢) ← 𝐺𝐴𝑇 − 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝑂𝑅𝑚𝑖��ℎ(𝑣),∀𝑣 ∈ 𝑁𝑚𝑖
(𝑢)�� 

7: end for 
8: ℎ′(𝑢) ← 𝐶𝑂𝑁𝐶𝐴𝑇𝐸𝑁𝐴𝑇𝐸 �ℎ(𝑢),ℎ𝑚1

′ (𝑢), … , ℎ𝑚|𝑀|
′ (𝑢)� 

9:          𝑍𝑢 ← 𝑊2 ⋅ 𝑇𝑎𝑛ℎ(𝑊1 ⋅ ℎ′(𝑢) + 𝑏1) + 𝐵2 
10: end for  
11: end for  
12: end for 
 

 
Figure 4. On the left is an example of graph G, and on the 

right is an example of graph characters 
 

 
Figure 5. Extracting a graph is required for each 

graph character. On the left, the graph is extracted 
from m1 or m2, and on the right, the graph is extracted 

from m3 or m4 
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For each iteration, SiGAT works on a batch in ℬ. 
In Figure 6, the operation of nodes in the batch on 
SiGAT gives new represented features of nodes in 
the batch. In Figure 7, ℎ(𝑢) is fed into aggregators 
with 𝑁𝑚𝑖(𝑢) and gives ℎ′���⃗ 𝑚𝑖

(𝑢) back. After that, the 
concatenated thing ℎ′���⃗ (𝑢) ∈ ℝ|𝑀|𝐹′+𝐹

P

 is formed from 
ℎ′���⃗ 𝑚𝑖

(𝑢) for all 𝑚𝑖 ∈ 𝑀, and ℎ�⃗ (𝑢) is input terms of 
the nonlinearity tanh function with parametrized 
weight matrices 𝑊1,𝑊2 and bias 𝑏1, 𝑏2. 
 

 
 

Figure 6. SiGAT operates on each batch by grouping 
nodes of graph G. In the figure, the green batch and 

yellow batch are examples of batches that SiGAT operates 
on 

 

 
 

Figure 7. SiGAT’s operation on the example node-3 in the 
green batch 

 
𝐺𝐴𝑇 − 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝑂𝑅𝑚𝑖   is formed by equations 

(1), (2), and (3). Subsequently, backward propagation 
computes the loss, which is defined as an 
unsupervised loss function below. 

 
 𝐽(𝑍𝑢) = −∑ log�𝜎(𝑍𝑢𝑇  𝑍𝑣+)�𝑣+∈𝑁(𝑢)+   
         −𝑄∑ log�𝜎(𝑍𝑢𝑇  𝑍𝑣−)�𝑣−∈𝑁(𝑢)− ,        (4) 
 

where 𝜎 is a sigmoid function that maps real 
numbers to the range (0,1), given by the equation 
𝑓(𝑥) = 1

1+𝑒−𝑥
 , 𝑥 ∈ ℝ. 𝑁(𝑢)+ is the set of positive 

neighbors of node 𝑢, and 𝑁(𝑢)− P

 is the set of negative 
neighbors of node 𝑢. The balance parameter 𝑄 is 
defined as the ratio of the number of positive 
neighbors to the number of negative neighbors, i.e., 
= �𝑁(𝑢)+�

|𝑁(𝑢)−| . This loss function reflects the idea that 
“friend embeddings are similar, and enemy 
embeddings are dissimilar.” 

To decrease the time required for learning in 
SiGAT, a proposed framework involves conducting 
experiments on diverse characteristic graph lists and 
utilizing specific graph datasets to analyze the 
properties that impact the SiGAT model. By 
examining the effects of various graph characteristics 
on the model’s performance, this approach aims to 
identify key factors that can improve the learning 
process. 

 
3. Diverse Characteristic Graph Lists 

 
Status theory deals with hierarchical relationships, 

where individuals or entities can be ranked higher or 
lower than others. For this reason, status theory is 
particularly suitable for directed graph datasets, 
which have sources and sinks that represent the 
origins and destinations of these relationships. The 
original SiGAT model, which had 38 characteristic 
graph lists (SiGAT-38), was revised to incorporate 
both status theory and balance theory. However, we 
are particularly interested in the characteristic graphs 
from the balance theory, which are neither as 
complex as SiGAT-38 nor as simple as the two 
characteristic graphs from status theory, which 
consist of arrowheads pointing in and out without 
any sign. In the next section, we will present two 
subsections detailing the process of generating 
characteristic graph lists and the experimental results 
obtained using SiGAT-38 and the generated lists. 
Characteristic graph lists are generated from two 
concepts, the first of which is based on SiGAT-38’s 
undirected concept, and the second one is the base 
concept which takes into account the societal 
connections within the network. 

 
3.1. Undirected Concept 

 
The Undi(8) graph list is similar to SiGAT-38’s 

approach, but with no direction on edges. In this list, 
the blue target node i collects orange neighbor nodes 
j that have a triad relation with gray nodes. This list 
uses both balanced and unbalanced triads so that the 
machine can learn from all cases. There are 8 
characters in this list, as shown in Figure 8. 

 

 
  (a)  (b)  (c)  (d) 

 
 (e)  (f)  (g)  (h) 
 

Figure 8. The Undi(8) graph list 
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The Undi(6) graph list extends from Undi(8) and 
includes gray nodes as neighbors in addition to 
orange nodes. In Undi(8), the target node i collects 
only orange neighbor nodes j, while Undi(6) also 
collects gray nodes as neighbors. In Undi(6), the gray 
node is the same as the orange node k in Undi(8), as 
shown in Figure 8. Since the triad with the target 
node is a symmetrical structure, it can be observed 
that the two triads (c) and (e) are similar to (d) and (f) 
in Figure 8. Therefore, this list has only 6 characters 
instead of 8. 

The Undi(8+6) list is a combination of the 
Undi(8) and Undi(6) lists. The Undi(8)* list is similar 
to the Undi(8) list but includes positive and negative 
signs, as shown in Figure 9. The Undi(6)* list is 
similar to the Undi(8)* list but based on the Undi(6) 
list. The Undi(8+6)* list adds positive and negative 
signs to the Undi(8+6) list. 

 

 
Figure 9. Positive and negative signs 

 
3.2.  Base Concept 

 
In the initialization part of the SiGAT algorithm, a 

new graph is extracted for each characteristic graph. 
This function works by focusing on one node and 
finding neighbors of its node that match with the 
characteristic graph. After that, it explores like this 
with all nodes in the graph. The focused node is 
called the target node. SiGAT-38 has a matching 
characteristic graph between the target node and its 
neighbors. The second concept considers the 
matching among only the target’s neighbors. 
However, the interested society is only in triad form 
that looks like a tetrahedron, where its spire is the 
target node and its base is the neighbors. Therefore, 
the second concept is called the base concept. 

The base list uses balanced and unbalanced triads 
to match among the target’s neighbors. However, it 
only collects neighbors that construct triad bases 
whose sum of signs of edges on the base equals the 
possible summation. A positive sign is 1, and a 
negative sign is -1. Therefore, the possible 
summations of triad bases are 3, 1, -1, and -3, as 
shown in Figure 10. There are 4 characteristic graphs 
contained in the Bbse list. 
 

 
Figure 10. The Base list 

The fixedBase list collects the neighbors j that 
form a triad base as depicted in Figure 11. The signs 
of the edges between the neighbors j and the gray 
nodes are denoted as s1 and s2, while the sign of the 
edge between the two gray nodes is denoted as s3, as 
shown in Figure 12. The characteristic graphs are 
obtained by considering the values of s1+s2 and s3, 
which result in six possible cases: s1+s2 can be 2, 0, 
or -2, and s3 can be 1 or -1. 
 

 
Figure 11. The fixedBase list 

 

 
Figure 12. The fixedBase concept 

 
The Base-Side1 list represents the characteristic 

graph on the base and side of the tetrahedron. It 
employs the base characters from the base list and the 
side characters from the triad summation of the base 
list, resulting in 8 possible characters as shown in 
Figure 13. 

 

 
Figure 13. The Base-Side1 list 

 

 
Figure 14. The Base-Side2 List 
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The Base-Side2 list also contains the 
characteristic graph of the base and side, similar to 
Base-Side1. However, the side characters in Base-
Side2 are different. Base-Side1 collects all neighbors 
j, regardless of whether they construct base triads. In 
contrast, Base-Side2 only collects the neighbors j that 
must construct base triads, as shown in Figure 14. 

The Base-Side1* and Base-Side2* lists are 
similar to Undi(8)* and Undi(6)*, respectively, and 
include both positive and negative signs with the 
Bas-Side1 list and Base-Side2 list, respectively. 

 
3.3. Illustrated Example: Bitcoin Alpha Dataset 

 
We utilized the Bitcoin Alpha dataset, obtained 

from the UCI machine learning repository [2] to 
demonstrate our method and compare it with other 
datasets. The results of our analysis are summarized 
in Table 1. Our findings indicate that SiGAT-38 has 
the minimum loss, while base has the least average 
time over 102 iterations of learning. Notably, Base-
Side2 has the least time ratio, even though its average 
time is not the lowest. We observed that the time 
spent on learning is not solely dependent on the 
number of characteristic graphs in each list, except 
for cases where a list includes characters from 
another list. For instance, the Undi(8+6)* list 
contains positive and negative signs in addition to the 
Undi(8+6) list, resulting in a higher number of 
characteristic graphs compared to Undi(8+6). As a 
result, the average time for Undi(8+6)* is greater 
than that of Undi(8+6). To optimize time spent 
during learning, we recommend identifying relevant 
characteristic graphs that are specific to the dataset 
and using only those for optimal results. 

 
Table 1. The loss and time results of various characteristic 
graphs lists’ experiments conducted on Bitcoin Alpha. 

 

Lists Minimum 
loss 

Average 
time 

#graphs 
in list 

Time 
ratio 

SiGAT-38 1105.76 13.38 38 0.35 
Undi(8) 1589.20 5.82 8 0.73 
Undi(8)* 1206.94 5.67 10 0.57 
Undi(6) 1756.49 5.11 6 0.85 
Undi(6)* 1481.30 6.09 8 0.76 
Undi(8+6) 1446.06 5.46 10 0.55 
Undi(8+6)* 1159.20 10.38 12 0.86 
Base 7613.17 1.45 4 0.36 
fixedBase 7087.21 1.75 4 0.44 
Base-Side1 7266.56 2.14 8 0.27 
Base-Side1* 7119.32 2.88 10 0.29 
Base-Side2 7286.15 2.12 8 0.27 
Base-Side2* 7150.22 2.87 10 0.29 

 
 

Remark - for binary classification problems with 
two classes, positive and negative, the accuracy value 
is equivalent to the micro F1-score. This means that 
if we have a balanced dataset with equal numbers of 
positive and negative samples, the accuracy score 
and micro F1-score will be the same. However, in 
cases where the dataset is imbalanced, the micro F1-
score may be a better metric for evaluating model 
performance than accuracy. This is because the micro 
F1-score takes into account both precision and recall, 
providing a more balanced evaluation of the model’s 
performance. Therefore, in situations where we have 
a highly imbalanced dataset, it is important to 
consider other evaluation metrics, such as F1-score, 
that provide a more comprehensive picture of the 
model’s performance. 

The Bitcoin Alpha dataset has a pos-ratio of 
0.93649, indicating that it is highly imbalanced. This 
means that the area under the curve (auc) value 
cannot be used as a reliable metric for evaluating the 
performance of models trained on this dataset. 
Therefore, other metrics such as F1-score of positive 
(F1-score(+)), F1-score of negative (F1-score(-)), 
macro-F1-score, and micro-F1-score are more 
appropriate for evaluating model performance. These 
metrics are calculated using the confusion matrix, 
which provides information on the model’s ability to 
accurately classify positive and negative samples. By 
evaluating the model on both macro and micro levels, 
we can get a better understanding of the model’s 
performance, and we can focus on the performance 
of each class using F1-score(+) and F1-score(-). 

When analyzing the undirected concept in Table 
2, we can see that both Undi(8) and Undi(6) 
outperform Undi(8+6). Although Undi(8) and 
Undi(6) have similar performance, the macro-F1-
score, micro-F1-score, and F1-score(+) of Undi(6) 
are better than those of Undi(8) due to the highly 
imbalanced nature of the Bitcoin Alpha dataset. The 
performance of classifying negative samples is 
higher, resulting in better F1-score(+) and micro F1-
score values for Undi(6). However, Undi(8) 
outperforms Undi(6) in terms of F1-score(-). 
Moreover, Undi(8)* and Undi(8+6) perform better 
than Undi(8) and Undi(8+6), respectively. On the 
other hand, Undi(6)* performs worse than Undi(6). 
These findings illustrate the importance of choosing 
appropriate metrics when evaluating models trained 
on imbalanced datasets. 

In Table 3, Base-Side2 outperforms fixedBase for 
the base concept. Base-Side1* performs better than 
the original but not as well as Base-Side2. Base and 
Base-Side1 have the lowest F1-score(-) due to their 
inability to predict any negative signs correctly.  
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This can be seen from the recall(+) value of 1, 
indicating that all actual positive signs were predicted 
correctly, while the recall(-) value of 0 indicates that 
no actual negative signs were predicted. Figure 15 
illustrates this situation. 

 
Table 2. The results of analyzing the undirected concept’s 
experiments conducted on the Bitcoin Alpha datasets. 
 

Bitcoin Alpha Undi(8) Undi(8)* Undi(6) 
precision(+) 0.95 0.96 0.95 
precision(-) 0.58 0.60 0.64 
recall(+) 0.99 0.99 0.99 
recall(-) 0.27 0.32 0.26 
F1-score(+) 0.97 0.97 0.97 
F1-score(-) 0.37 0.42 0.36 
Macro-F1-score 0.67 0.69 0.67 
Micro-F1-score 0.94 0.95 0.95 
AUC score 0.87 0.89 0.85 

 
Bitcoin Alpha Undi(6)* Undi(8+6) Undi(8+6)* 

precision(+) 0.95 0.95 0.94 
precision(-) 0.59 0.57 0.95 
recall(+) 0.99 0.99 0.57 
recall(-) 0.26 0.24 0.26 
F1-score(+) 0.97 0.97 0.97 
F1-score(-) 0.36 0.33 0.36 
Macro-F1-score 0.67 0.65 0.66 
Micro-F1-score 0.94 0.94 0.94 
AUC score 0.87 0.87 0.88 

 
Next, we focus on four characteristic graph lists: 

Undi(8), Undi(6), Base, and fixedBase. While 
Undi(8) and Undi(6) demonstrate solid performance, 
Undi(8+6) is simply a combination of the two. Both 
Base and fixedBase only consider triads in the 
neighborhood of the target node, whereas Base-Side1 
and Base-Side2 consider triads of the target node and 
its neighbors. Comparing these concepts with 
SiGAT-38, SiGAT-38 exhibits the best performance. 
The undirected concept is closer to SiGAT38 than 
the base concept, and the minimum loss of the 
undirected concept is also similar to SiGAT-38. 
However, the average computation time of the base 
concept is much lower than that of SiGAT-38. 
 

 
 

Figure 15. A special case where recall(+) equals 1 and 
recall(-) equals 0 

Table 3. The results of analyzing the base concept’s 
experiments conducted on the Bitcoin Alpha datasets 
 

Bitcoin Alpha Base fixedBase Base-S1 
precision(+) 0.94 0.94 0.94 
precision(-) 0.00 0.33 0.00 
recall(+) 1.00 1.00 1.00 
recall(-) 0.00 0.01 0.00 
F1-score(+) 0.97 0.97 0.97 
F1-score(-) 0.00 0.01 0.00 
Macro-F1-score 0.48 0.49 0.48 
Micro-F1-score 0.94 0.94 0.94 
AUC score 0.71 0.74 0.73 

 
Bitcoin Alpha Base-S1* Base-S2 Base-S2* 

precision(+) 0.94 0.94 0.94 
precision(-) 0.63 0.60 0.00 
recall(+) 1.00 1.00 1.00 
recall(-) 0.02 0.01 0.00 
F1-score(+) 0.97 0.97 0.97 
F1-score(-) 0.03 0.02 0.00 
Macro-F1-score 0.50 0.49 0.48 
Micro-F1-score 0.94 0.94 0.94 
AUC score 0.74 0.75 0.71 

 
4. Specific Graphs Datasets  
 

It is not possible to develop an approach that can 
solve or learn all the various properties of datasets. 
Therefore, this section focuses on specific graph 
datasets that we have generated to evaluate the 
SiGAT model using interesting characteristic graph 
lists. In the previous section, four characteristic graph 
lists were discussed, namely Undi(8), Undi(6), Base, 
and fixedBase. However, for this section, we are 
interested in two characteristic graph lists, namely 
Undi(8) and fixedBase. The reason for this is that 
these two lists only collect the neighbors of a target 
node once for each target’s neighbor finding, which 
is different from Undi(6) and Base. 

In the next subsections, we divide the generated 
graphs used for experimentation into three groups. 
All generated graphs are in the signed directed 
domain for experimentation, and the models ignore 
the directions of nodes on edges for undirected 
graphs, except for the SiGAT-38 indicator. 
 
4.1. Random Graphs 
 

The random graph group refers to graphs 
generated with random edges, signs, and directions. 
Within this group, we created four datasets: graph1, 
graph2, graph1+2, and graph3. 
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Graph1 contains 1,632 nodes and 8,260 edges, 
created as a connected component graph, similar to 
graph2, which has 1,648 nodes and 8,444 edges. 
Graph1+2 is a combination of graph1 and graph2, 
resulting in a graph with 3,280 nodes, 16,704 edges, 
and two connected components. Graph3 is also a 
combination of graph1 and graph2 but with an 
additional edge to link the components. This results 
in a graph with 3,281 nodes and 16,705 edges. 

As the graphs used in this study are randomly 
generated, it resulted in the loss of extracted graphs 
on fixedBase. These generated graphs lack the 
characteristics of fixedBase’s characteristic graphs, 
which means that no experiments could be conducted 
on fixedBase.  

Regarding Table 4, the minimum loss of graph1, 
graph1+2, and graph3 are likely decreasing in that 
order. This is interesting because graph1 is a part of 
graph1+2 and graph3, yet the minimum loss of these 
two graphs is less than graph1’s loss. The minimum 
loss of Undi(8) increases from SiGAT-38, while the 
time spent on Undi(8) decreases. The average time 
spent is rising with the graph1, graph3, and graph3 
sequences. For graph1+2 and graph3, which have a 
different part consisting of only one edge, the 
difference in average time is larger than the 
difference in the part. It is necessary to evaluate the 
values, such as AUC and F1-score, as they are 
around 0.5. This means that the SiGAT-38 and 
Undi(8) models cannot classify the signs of edges, 
and hence, they are not effective. 
 
Table 4. The loss and time results of random graph’s 
experiments conducted on Bitcoin Alpha 
 

Loss minimum 
Dataset SiGAT–38 Undi(8) fixedBase 

Graph1 88.15 2435.80 - 
Graph1+2 62.01 872.55 - 
Graph3 62.08 872.51 - 

Time average 
Dataset SiGAT–38 Undi(8) fixedBase 

Graph1 4.95 3.11 - 
Graph1+2 20.74 7.46 - 
Graph3 19.16 9.10 - 

 
4.2. Triangle Component Graph 
 

The triangle component graph is created to check 
the effect of the number of connected components on 
the graph. This group is created by connecting 
triangles to construct connected components, where 
all the characteristic graphs are triangles. We 
generate these graphs to determine the extent to 
which the number of triangles affects the models. 

 

We generated graph-c(n), which has around 2,500 
nodes and 8,500 edges for n in {1,2,3,4,5}. However, 
the evaluation values for these graphs are 
approximately 0.5, similar to the random graph, 
indicating that the models are unclassified. To test on 
larger graphs, we generate graph-c2(n), which has 
3,000 nodes and approximately 62,500 edges, but the 
evaluation values are still around 0.5. We observe 
that the minimum loss of graph-c(n) and graph-c2(n) 
increases for Undi(8) when compare with SiGAT-38, 
but decrease for fixedBase. The results presented in 
Table 5 indicate that the average time is consistently 
the best for fixedBase, followed by Undi(8) and 
SiGAT-38. However, the primary purpose of 
generating these graphs is to check the effect of the 
number of connected components and the number of 
triangles, but the effect of the number of connected 
components is not evident. Furthermore, the effect of 
the number of triangles involves time spent since 
there are more nodes and neighbors to consider. 
 
Table 5. The loss and time results of graph-c(n) and 
graph-c2(n) experiments conducted on Bitcoin Alpha 
 

Minimum loss 
Dataset SiGAT–38 Undi(8) fixedBase 

Graph-c(1) 39.83 121.25 0.69 
Graph–c(2) 39.83 114.66 3.11 
Graph–c(3) 33.72 113.65 9.84 
Graph–c(4) 67.25 149.27 14.03 
Graph–c(5) 145.16 200.16 52.48 
Graph–c2(1) 21976.22 45043.43 356.67 
Graph–c2(2) 19031.85 43311.19 864.20 
Graph–c2(3) 18665.73 43198.74 2136.00 
Graph–c2(4) 19568.09 43978.39 3579.60 
Graph–c2(5) 18088.79 42866.53 6440.54 

 
Average time 

Dataset SiGAT–38 Undi(8) fixedBase 
Graph–c(1) 13.02 5.84 0.23 
Graph–c(2) 13.02 4.43 0.47 
Graph–c(3) 11.35 5.12 0.56 
Graph–c(4) 11.77 4.83 0.52 
Graph–c(5) 11.00 5.53 0.56 
Graph–c2(1) 24.22 9.41 1.07 
Graph–c2(2) 24.15 9.49 1.64 
Graph–c2(3) 23.28 9.58 2.55 
Graph–c2(4) 24.67 9.84 3.44 
Graph–c2(5) 36.69 9.58 4.82 

 
We also generate graph-c-p0.8(n) to simulate the 

imbalance of Bitcoin Alpha. The positive probability 
is set to 0.8.  

 
 



 TEM Journal. Volume 13, Issue 2, pages 885-896, ISSN 2217-8309, DOI: 10.18421/TEM132-05, May 2024. 

894                                                                                                                               TEM Journal – Volume 13 / Number 2 / 2024. 

The results presented in Table 6 indicate that that 
the minimum loss and average time were similar to 
graph-c(n) and graph-c2(n), but the evaluation values 
are weird, with a high F1-score(+) and a low F1-
score(-) for SiGAT-38 and Undi(8), and zero for 
fixedBase because the model has no negative 
predictions, as observed in the Bitcoin Alpha 
experiment. To address this issue, we generate graph-
c-p0.8(n)* by removing the edge with the same 
nodes tuple. For instance, if edge e1 goes from node a 
to node b with a positive sign, and edge e2 goes from 
node b to node a, with a negative sign, we cut one of 
them. Consequently, graph-c-p0.8(n)* has no same 
nodes tuple of edges. The data presented in Table 5 
suggests that the F1-score(-) is likely to be higher 
than the original, resulting in an increase in the AUC 
score to around 0.7 for both SiGAT-38 and Undi(8). 
However, for fixedBase, only components 4 and 5 
have characteristics, resulting in the graph having 
only 4 and 5 components. Similar to graph-c-p0.8(n), 
it does not classify the negative class. 
 
Table 6. The loss and time results of graph-c-p0.8(n) and 
graph-c-p0.8*(n) experiments conducted on Bitcoin Alpha 
 

Minimum loss 
Dataset SiGAT–38 Undi(8) fixedBase 

Graph–c-p0.8(1) 25.27 81.53 14.25 
Graph–c-p0.8(2) 36.22 101.69 20.25 
Graph–c-p0.8(3) 40.20 98.03 17.24 
Graph–c-p0.8(4) 79.06 139.55 57.47 
Graph–c-p0.8(5) 65.23 135.37 45.48 
Graph–c-p0.8*(1) 14.34 80.12 - 
Graph–c-p0.8*(2) 13.94 77.06 - 
Graph–c-p0.8*(3) 15.12 75.57 - 
Graph–c-p0.8*(4) 25.24 68.40 5.61 
Graph–c-p0.8*(5) 15.47 80.02 11.81 

 
Average time 

Dataset SiGAT–38 Undi(8) fixedBase 
Graph–c-p0.8(1) 10.81 10.81 0.50 
Graph–c-p0.8(2) 9.93 4.26 0.49 
Graph–c-p0.8(3) 9.94 4.28 0.52 
Graph–c-p0.8(4) 11.43 4.27 0.55 
Graph–c-p0.8(5) 10.78 6.31 0.51 
Graph–c-p0.8*(1) 10.60 4.12 - 
Graph–c-p0.8*(2) 9.91 4.13 - 
Graph–c-p0.8*(3) 9.85 4.53 - 
Graph–c-p0.8*(4) 12.50 4.37 0.19 
Graph–c-p0.8*(5) 10.60 4.67 0.42 

 
 
 
 

4.3. Tree Graph 
 

In our experimentation with planar graph datasets, 
we specifically focused on trees. A planar graph is a 
graph that can be embedded in the plane without any 
edges crossing each other. A tree is an undirected 
graph that is connected and acyclic, which means it 
contains no cycles (loops). We generate two tree 
datasets: tree-d2 and tree-d10, each consisting of 
3,000 nodes and 2,999 edges. The tree-d2 dataset is a 
tree where each node has a degree of at most 2, while 
the tree-d10 dataset has a degree of at most 10. In 
this study, the degree is defined as the combination 
of in-degree and out-degree. 

However, since trees are connected graphs that 
contain no cycles, Undi(8) and fixedBase models are 
not able to learn these graph structures. On the other 
hand, for the SiGAT-38 model, we use only six non-
triad characters, named SiGAT-38*, (Table 7). 
Although the results are not shown, the model is able 
to learn the tree structures effectively, indicating its 
potential for learning complex planar graphs. 
 
Table 7. The loss and time results of tree-d2 and tree-d10 
experiments conducted on Bitcoin Alpha 
 

SiGAT-38* Minimum loss Average time 
tree-d2 2.74 3.21 
tree-d10 2.80 3.02 

 
5. Subgraph-based Learning Approach  
 

In this part, we aim to improve the performance 
of our model on the Bitcoin Alpha dataset by using a 
new training and testing approach. Specifically, we 
focus on a subgraph-based learning strategy where 
we extract a subgraph from a larger graph, which is 
simulated from the Bitcoin Alpha dataset, by 
identifying a domination set. A domination set is a 
subset of vertices in a graph such that each vertex in 
the graph is either a part of the subset or adjacent to a 
vertex in the subset. Dominating sets are important in 
graph theory because they can be used to model a 
variety of real-world problems, such as facility 
location, sensor placement, and network routing. The 
domination number of a graph is the minimum size 
of a dominating set for the graph. Finding the 
domination number is an NP-hard problem. 

By constructing a subgraph from the domination 
set, we can simplify the original graph while 
preserving its structural properties. This allows us to 
train and test our model on a smaller and more 
manageable subgraph, which can improve the 
efficiency and accuracy of our approach.  

Overall, we expect this new subgraph-based 
learning approach to yield better results on the 
Bitcoin Alpha dataset than previous methods. To 
extract the subgraph, we first determine the 
domination number of the graph, which in this case is 
1,706. Then the nodes are ranked in the graph by 
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their degree and the top nodes and their neighbors are 
selected to form the first subgraph, which we refer to 
as subgraph1. This subgraph contains a total of 3,623 
nodes, which is close to the size of the original 
Bitcoin Alpha graph, which has 3,783 nodes. We 
then split subgraph1 into training and testing sets, 
with the testing set consisting of the difference 
between the Bitcoin Alpha graph and subgraph1. 
This allows us to evaluate the performance of our 
model on the remaining nodes in the graph. The 
resulting dataset is called Bitcoin Alpha 2, and the 
training set accounts for 80% of the total data. 

However, in order to further improve the 
efficiency and accuracy of our model, we extract 
another subgraph called subgraph2. This subgraph 
contains nodes with a degree of less than 100 and 
their neighbors. We split subgraph2 into training and 
testing sets, with the testing set again consisting of 
the difference between the Bitcoin Alpha graph and 
subgraph2. The resulting dataset is called Bitcoin 
Alpha 3, and the training set accounts for 70% of the 
total data. 

By using subgraph-based learning on these new 
datasets, we aim to better understand the underlying 
structure of the Bitcoin Alpha graph and improve the 
accuracy of our model. The use of multiple 
subgraphs with different node selection criteria can 
provide insights into which nodes and edges are most 
important for predicting node behavior, and can help 
us to develop more efficient and accurate machine 
learning algorithms for graph data. 

The experimental results presented in Tables 8 
and 9 show that the Bitcoin Alpha 2 dataset 
outperforms subgraph2 in terms of prediction 
accuracy, although this comes at the cost of increased 
time spent on training and testing the model. The 
Bitcoin Alpha 2 dataset contains 23,996 edges, which 
is comparable to the number of edges in the original 
Bitcoin Alpha dataset, which has 24,186 edges. In 
contrast, the Bitcoin Alpha 3 dataset has only 20,344 
edges, which may explain its relatively poor 
performance. The lower number of edges, combined 
with the smaller percentage of nodes in the training 
set, may have resulted in insufficient information for 
the model to accurately predict node behavior. 
Overall, these results suggest that the choice of 
subgraph and its size can have a significant impact 
on the performance of machine learning algorithms 
for graph data, and highlight the importance of 
carefully selecting appropriate subgraphs for training 
and testing. 

 
Table 8. The loss and time results of experiments 
conducted on Bitcoin Alpha 2 and Bitcoin Alpha 3 
 

SiGAT–38 Minimum loss Average time 
Bitcoin Alpha 2 1002.89 13.50 
Bitcoin Alpha 3 898.72 8.27 
 

 
 

Table 9. The results of analyzing experiments conducted 
on Bitcoin Alpha 2 and Bitcoin Alpha 3 
 

SiGAT–38 Bitcoin 
Alpha 2 

Bitcoin 
Alpha 3 

pos-ratio(test) 0.94 0.94 
accuracy 0.95 0.95 
precision(+) 0.96 0.96 
precision(-) 0.68 0.66 
recall(+) 0.99 0.99 
recall(-) 0.36 0.30 
F1-score(+) 0.97 0.98 
F1-score(-) 0.47 0.42 
Macro-F1-score 0.72 0.70 
Micro-F1-score 0.95 0.95 
AUC score 0.93 0.88 

 
6. Conclusion and Discussion 
 

SiGAT is a model that embeds nodes on a graph 
to learn tasks on graphs. This study focuses on linked 
prediction. Initial experiments on Bitcoin Alpha 
using various characteristic graph lists demonstrate 
that the number of graph characters is not relevant to 
the time spent on the SiGAT model. However, 
characteristic graph lists in an undirected concept 
provide evaluation results close to those of SiGAT-
38, and they require only one third of the learning 
time. They are a good choice for further study on 
other tasks. Additionally, characteristic graph lists in 
a base concept have a time spent around one sixth of 
SiGAT-38 or one half of the undirected concept, 
even though their evaluating values are lower than 
the undirected concept. Users can weigh their 
advantages, performance, or time spent. 
Next, a dataset is generated to test on chosen lists. 
Since the time spent is not relevant to the number of 
graphs in the list, it is assumed to be related to the 
number of neighbors on each graph in the list for 
each target node. Therefore, Undi(8) and fixedBase, 
which have good performance, are chosen. They only 
pick one neighbor for each target’s exploration. 

There are three groups of graphs to test on 
SiGAT-38, Undi(8), and fixedBase. Firstly, these 
models cannot classify signs on edges of random 
graphs. Secondly, testing is performed on triangle 
component graphs since most characters in the lists 
are in triangle form, and the effect of the number of 
components is checked.  

Similarly, the models cannot classify on a triangle 
component graph. Next, the interest is in planar 
graphs. A tree graph is one of the planar graphs. 
Since a tree has no cycle, it can only learn on non-
triad of SiGAT-38 called SiGAT-38*. Once again, 
the models cannot classify on a tree. 
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Furthermore, we perform experiments on new 
splitting dataset. Bitcoin Alpha is split into a new 
training and testing set to be learned. The new 
datasets involve the domination number and the 
addition of in-degree and out-degree of nodes. 
Datasets from the domination number have better 
performance than the original Bitcoin Alpha. In 
conclusion, SiGAT is a powerful concept in graph 
neural networks that has the potential to provide a 
more accurate representation of real-world 
phenomena. While SiGAT has some limitations, 
researchers continue to explore its potential 
applications and improve its performance. This study 
provides valuable insights into SiGAT’s 
effectiveness on linked prediction tasks and various 
graph structures. The results suggest that undirected 
characteristic graphs with fewer learning times are 
suitable for extended studying of other tasks. We 
recommend further studies on the effect of nodes that 
are neighbor’s any target on the same characters and 
properties of features. 
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