
TEM Journal. Volume 13, Issue 2, pages 875-884, ISSN 2217-8309, DOI: 10.18421/TEM132-04, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 875

Application of Parallel Computing in the
Analysis of Usability Tests, Under the

Mouse Tracking Approach
Gabriel Elías Chanchí G. P

1
P, Laura Sofía Chanchí P. P

2
P, Manuel Alejandro Ospina A.P

1

P

1
PUniversidad de Cartagena, Avenida del Consulado, Calle 30 # 39B-192, Cartagena, Colombia

P

2
PUniversidad del Cauca, Campus Tulcán, Popayán, Colombia

Abstract – Mouse tracking tests play a crucial role in
evaluating software usability, but their efficient image
processing remains challenging, especially with high-
resolution images and numerous participants. This
article introduces a novel method, leveraging parallel
computing, for the efficient analysis of interaction
zones in mouse tracking test images. Following Pratt's
iterative research pattern, the proposed method is
implemented using Python libraries Dask and
OpenCV, validated through a proof of concept on
Eclipse software. Results demonstrate the parallel
approach's remarkable efficiency, being 252 times
faster than the sequential method across various
executions. The method's potential impact is discussed,
providing a valuable reference for developing tools in
usability and other application contexts. The open-
source tools employed, Dask and OpenCV, prove
suitable for parallel image analysis, offering versatility
for broader application in diverse fields. This work
contributes to advancing the field of mouse tracking
analysis by significantly improving processing
efficiency and lays the groundwork for future tools and
methodologies.

Keywords – Parallel computing, sequential

computing, mouse tracking, usability, usability test.

DOI: 10.18421/TEM132-04
34TUhttps://doi.org/10.18421/TEM132-04 U34T

Corresponding author: Gabriel Elías Chanchí G,
Universidad de Cartagena, Avenida del Consulado, Calle
30 # 39B-192, Cartagena, Colombia
Email: 34TUgchanchig@unicartagena.edu.coU34T

Received: 30 December 2023.
Revised: 13 March 2024.
Accepted: 22 March 2024.
Published: 28 May 2024.

 © 2024 Gabriel Elías Chanchí G., Laura
Sofía Chanchí P. & Manuel Alejandro Ospina A.; published
by UIKTEN. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivs 4.0
License.

The article is published with Open Access at
Uhttps://www.temjournal.com/

1. Introduction

Given the vast number of applications available in
online stores, one of the most crucial attributes to
enhance both software quality and user experience is
usability [1], [2], [3], [4]. Usability not only
contributes to improving the competitiveness of
software companies but also enhances user
productivity in interaction [5], [6], [7], [8].

According to Nielsen [9], usability can be
understood as an attribute of software quality,
allowing the evaluation of how easy interfaces are to
use. Similarly, according to ISO 9241-11, usability
can be defined as the extent to which a user achieves
specific goals within software with effectiveness,
efficiency, and satisfaction [10], [11], [12], [13]. One
way to assess the usability of software and its
defining attributes (effectiveness, efficiency, and
satisfaction) is through user tests, where end-users
are observed in a controlled usability lab while
performing a set of tasks in specific software [14],
[15], [16].

One of the complementary tests that is performed
within a user test and that contributes to the
improvement of interaction efficiency and therefore
to the improvement of the user experience is the
mouse tracking test, in which the capture and
analysis of the mouse trace is used to identify the
areas of the screen where there is greater interaction
between the user and the software, revealing patterns
and preferences in mouse movement [17], [18], [19],
[20]. Significance of these tests lies in their ability to
determine the optimal placement of interface
components by aligning with high-priority zones.
This strategic alignment not only enhances efficiency
but also significantly contributes to reducing the
user's mental load during interaction [21], [22]. Thus,
mouse tracking tests provide a detailed perspective
that facilitates the creation of more intuitive
interfaces focused on user needs [23].

mailto:gchanchig@unicartagena.edu.co
https://www.temjournal.com/
https://doi.org/10.18421/TEM132-04

 TEM Journal. Volume 13, Issue 2, pages 875-884, ISSN 2217-8309, DOI: 10.18421/TEM132-04, May 2024.

876 TEM Journal – Volume 13 / Number 2 / 2024.

One of the challenges of mouse tracking tests is
the efficient analysis of the interaction zones in the
images with the mouse trace, given the amount of
data or pixels contained in the increasingly high
quality images and the number of users performing
the test [24], [25]. In this regard, the conventional or
sequential computing approach relies on pixel
counting for areas of interest by iterating through the
image from left to right and top to bottom.
Consequently, computational efficiency becomes a
challenge in the analysis of mouse tracking tests.
Based on the above, it is convenient to take
advantage of the benefits in image analysis in
different application contexts provided by parallel
computing [26], which corresponds to a computing
approach that involves the simultaneous execution of
multiple tasks or processes, with the objective of
improving computational efficiency and
performance. Thus, instead of performing one task at
a time, as in sequential computing, parallel
computing divides complex problems into smaller
tasks that can be executed simultaneously on
multiple processors or cores [27], [28].

Different works have been conducted on the topic
of mouse tracking. In [21], a tool is proposed for the
analysis of interaction zones in mouse tracking tests
using sequential computing. Similarly, in [25], a tool
was developed for the analysis of mouse traces using
unsupervised learning models, such that the main
interaction zones are detected by obtaining clusters
and their associated centroids. In [29] a study based
on eye tracking and mouse tracking was developed
on commercial and educational portals in Nigeria,
using OGAMA software, in order to identify search
and browsing patterns employed by users interacting
with these web portals. In [30] a study was conducted
using machine learning techniques and sequential
computing with the main objective of predicting
users’ implicit interest in products of an online store
based on their mouse behavior through various
product page elements, which allows businesses to
acquire the understanding of their customers interests
to innovate and develop new products and services.
In [23] a framework that employs methods for eye
and mouse tracking, keyboard input, self-assessment
questionnaire and artificial intelligence algorithms
was proposed to evaluate user experience and
categorize users in terms of performance profiles.
This framework makes use of the Tracking
Techniques User eXperience Tool T2-UXT to
collect, collate, process, and visualize data obtained
from users’ interactions. Furthermore, the evaluation
of the mouse tracking method is conducted in [31],
aiming to explore perception and digital map
cognition.

Considering that the practical implementation of
mouse-tracking studies requires the use of software
tools that are capable of supporting the process of
experimental design, data analysis and visualization,
this work includes a concise compilation of software
tools discussed in previous scientific articles, such as
MouseTrack, OGAMA, Qualtrics mouse-tracking
and MatMouse. Additionally the analysis of the use
of this method in term of its advantages and
limitations is presented, demonstrating that mouse
tracking could serve as one of the most powerful
methods in cartographic research. From the previous
works, it can be observed that while the advantages
of mouse tracking tests are leveraged to enhance
interaction or detect areas of interest in the field of
marketing and other contexts, these works do not
focus on improving the efficiency of the analysis of
areas of interest, nor do they make use of the parallel
computing approach for the analysis and processing
of images with mouse traces.

In this paper we propose as a contribution a
method based on the parallel computing paradigm for
the analysis of interaction zones on images obtained
from usability tests under the mouse tracking
approach. In order to evaluate the effectiveness and
efficiency of the implemented method, a proof of
concept was performed in which the results of the
interaction zone analysis using the sequential
approach and the parallel computing approach were
compared on an image obtained from a mouse
tracking test performed on the Eclipse development
tool and obtained from the IOGraphica portal. For
the comparison, the times obtained in performing
different numbers of executions on the conventional
and parallel computing methods implemented were
taken into account. Likewise, the efficiency of the
parallel computation method with respect to the
conventional one was calculated in different number
of executions and in average. On the other hand,
based on the results obtained in different executions,
the average time taken by the methods to perform the
zone interaction analysis in the proof of concept was
determined. For the implementation of the proposed
method in this article, the advantages provided by the
open-source parallel computing library Dask were
utilized. This library allows the processing of large
volumes of data by organizing them into blocks and
enabling parallel and/or distributed processing.
Additionally, the OpenCV image processing library,
the NumPy library for vectorized operations, the
SciPy library for curve fitting to measured data, and
the scikit-learn library for applying result evaluation
metrics were employed.

The proposed approach in this article aims to
serve as a reference for the development of software
tools for the efficient analysis of images derived from
mouse tracking tests.

 TEM Journal. Volume 13, Issue 2, pages 875-884, ISSN 2217-8309, DOI: 10.18421/TEM132-04, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 877

Similarly, such approaches can be extrapolated
for the analysis of heatmaps derived from eye-
tracking tests in the context of usability or at the
usability and marketing levels. In this regard, the use
of powerful open-source libraries such as Dask and
OpenCV facilitates the harnessing of parallel
computing in the analysis and processing of images
in various application contexts.

The rest of the article is organized as follows:
Section 2 presents the methodological phases
considered in the development of this work. In
Section 3, the results obtained in this research are
described, including the specification of the proposed
method, the description of method implementation,
and finally, the case study where the conventional
method and the parallel computing-based method are
compared. Lastly, in Section 4, conclusions and
future work derived from this research are presented.

2. Methodology

For the development of the present research, the
four methodological phases of the iterative research
pattern proposed by Pratt were taken into
consideration (Figure 1) [32], [33].

Figure 1. Methodology considered

In Phase 1 of the methodology, the

conceptualization and characterization of the analysis
carried out in conventional mouse tracking tests were
performed to identify challenges in processing
images with the mouse trace. Thus, the flowchart
presented in Figure 2 was created, depicting the
overall process conducted under the sequential
computing approach to obtain interaction percentages
in areas of interest in images with the mouse trace.

Figure 2. Sequential computing approach

According to Figure 2, once the image with the

mouse trace is loaded, the process involves
converting it to grayscale and binarizing the image
using a reference threshold. From the binarized
image, iteration is performed for each pixel to count
the pixels belonging to a specific area of interest.
Thus, based on the counters associated with each
area of interest, the calculation of interaction
percentages for each of the zones is carried out.

On the other hand, in Phase 2 of the methodology,
based on the computational efficiency challenges
identified in Phase 1, a method based on parallel
computing was designed to process mouse tracking
images and identify interaction percentages by screen
zones. In Phase 3 of the methodology, the method
designed in Phase 2 was implemented using open-
source tools. Specifically, the Dask, OpenCV, and
NumPy libraries were selected for the parallel
processing and analysis of images with mouse traces.

 TEM Journal. Volume 13, Issue 2, pages 875-884, ISSN 2217-8309, DOI: 10.18421/TEM132-04, May 2024.

878 TEM Journal – Volume 13 / Number 2 / 2024.

Finally, in Phase 4 of the methodology, a proof of
concept was conducted using an image obtained from
a mouse tracking test performed on the Eclipse
development environment by the company
IOGraphica, in order to evaluate the proposed
method. Thus, based on the test image, a comparative
analysis of the efficiency of the parallel computing-
based method versus the sequential computing-based
method was carried out. For this purpose, both
methods were implemented as functions in the
Python language and executed 10, 20, 30, 40, 50, 60,
70, 90, and 100 times to obtain execution times per
run and the average time. Likewise, the efficiency
achieved per execution and the average efficiency of
the parallel computing-based method was
determined.

For these tasks, the advantages provided by the
timeit library were utilized, enabling the
measurement of the time taken to execute a specific
function.

3. Results

Based on the challenges identified in

characterizing mouse trace analysis through
sequential computing, the first step involved
designing a method based on parallel computing for
processing images obtained in mouse tracking tests
and identifying the corresponding percentages for
interaction zones in these images. Thus, Figure 3
shows the method based on parallel computation
designed from the process described in Figure 2.

Figure 3. Proposed method based on parallel computing

According to Figure 3, it is possible to observe
that once the image with the mouse trace is loaded,
the image is converted to grayscale and binarized
from a reference threshold. From the binarized
image, the dimension of the chunks is obtained for
the width and height of the image, which correspond
to the blocks in which the processing will be
performed in parallel and in this case have been
made to correspond to the number of interaction
zones. For example, if the analysis is intended for 4
interaction zones, 4 chunks are obtained with
dimensions proportional to the width and height of
the image. With the obtained chunk dimensions, the
binarized image is then converted into a parallel
computing array, which is segmented into the
determined processing blocks. From the segmented
array, parallel pixel counting is carried out per block
or zone, resulting in a matrix with the total pixel
count per block.

This matrix is used to calculate the overall sum of
interaction pixels and, consequently, to calculate the
percentage of interaction per area of interest.

Based on the process described in Figure 3, the
parallel computing method was implemented for the

analysis of 4 interaction zones, using Python

libraries such as Dask, Numpy, and OpenCV, as
illustrated in

Figure 4. In Figure 4, it is observed how, from the
binarized mouse tracking image, the dimensions of
the image are obtained in the variables w and h.
Since the analysis was programmed for 4 zones, the
dimensions of the chunks (chunk_x, chunk_y) are
obtained by dividing the variables w and h by two.
Using the dimensions of the chunks, the parallel
computing array (m), specific to the dask library and
compatible with numpy arrays, is obtained. This
array has been segmented according to the defined
blocks or chunks.

 TEM Journal. Volume 13, Issue 2, pages 875-884, ISSN 2217-8309, DOI: 10.18421/TEM132-04, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 879

The m array is used to invoke the map_blocks
function, which allows executing the same function
for each of the defined blocks or chunks. In this case,
the compute_block function is executed in parallel
for the blocks and obtains as a result a matrix with
the count of black pixels per block (res), that is, the
pixels where interaction was detected in a particular
zone. From the results of the res matrix, it is possible
to determine the total number of interaction pixels
and the interaction percentages associated with each
of the 4 zones of interest.

Figure 4. Implementation of the proposed method
using dask

In order to evaluate the proposed approach, a

proof of concept was developed in which an analysis
was conducted on a mouse trace obtained from a
mouse tracking test conducted in the Eclipse
programming environment by IOGraphica. This test
was performed using the IOGraph mouse tracking
tool, created by the same company. Thus, in Figure
4, the image of the mouse trace considered in the
proof of concept is presented. This illustration
depicts the four interaction zones under
consideration, which in this case correspond to the
four blocks or chunks used in parallel computation.

Figure 5. Image used in the proof of concept

As mentioned in the methodology, both the
sequential method and the parallel computing-based
method were implemented as functions in the Python
language to assess their effectiveness and efficiency.
It is worth noting that the parallel computing-based
method was effective in computing the areas of
interest, obtaining the same percentage results for on-
screen areas of interest as the sequential computing-
based method. These percentage results are presented
in Figure 6.

 Figure 6. Interaction percentages per zone

The results obtained in Figure 6 are consistent

with the distribution of the mouse trace presented in
Figure 4, such that 65.546% of user interaction is
concentrated in zone 1 of the screen. The above
result can be explained by the fact that the main
functions of the Eclipse development environment
are located in an area of high visual hierarchy, i.e. in
the upper left part of the screen, which helps to
minimize the user's memory load and facilitate
interaction. Once the proper functioning of the
method was verified, the efficiency of the methods
was compared by conducting varying numbers of
executions (10, 20, 30, 40, 50, 60, 70, 80, 90, and
100) on both methods and measuring the time spent
processing the different executions. Thus, Table 1
presents the results obtained in terms of time
expended by both methods for the different
executions conducted.

Table 1. Execution times obtained

Executions Execution time
sequential

approach (s)

Execution time
parallel approach

(s)
10 11.425 0.047
20 22.382 0.086
30 33.523 0.134
40 44.585 0.174
50 56.064 0.222
60 66.630 0.260
70 77.489 0.308
80 89.821 0.338
90 100.734 0.420
100 112.015 0.446

 TEM Journal. Volume 13, Issue 2, pages 875-884, ISSN 2217-8309, DOI: 10.18421/TEM132-04, May 2024.

880 TEM Journal – Volume 13 / Number 2 / 2024.

According to the results in Table 1, it is possible
to appreciate how, when comparing the two
considered approaches, the time spent in the parallel
approach during different executions is significantly
lower. In the worst-case scenario (90 executions), it
is 240 times better compared to the time spent in the
sequential approach. In the same vein, it is observed
that for 100 executions, the time spent by the
sequential approach is over 112 seconds, while in the
parallel approach, it barely reaches 0.5 seconds. The
rate of increase per requests in the sequential and
parallel approaches can be more clearly observed in
Figures 7 and 8, where the time spent by both
approaches for a different number of executions is
presented, along with the curve that best fits the data,
using the curve_fit function from the SciPy library in
Python which allows for finding the optimal
parameters corresponding to the slope and intercept
values that describe the data behavior.

In this context, for the case of the curve equation
in Figure 7, a standard error of 0.004086 was
obtained for the slope value, and 0.253514 for the
intercept value. These values were calculated from
the covariance matrix associated with the optimal
adjusted values. This metric indicates how much
estimates are likely to fluctuate when the model is
fitted to diverse datasets, thus allowing for the
evaluation of the reliability of the estimates for the
calculated coefficients, in this case, the slope and
intercept. In the same vein, concerning the mean
squared error (MSE), a value of 0.110178 was
obtained, which serves to assess how well the curve
fits the data.

Figure 7. Variation of the total data processing time with

the number of tests for the sequential approach

The fitted curve in Figure 7 reveals that in the
sequential approach, there is a progressive increase in
the total processing time from 11.425 seconds (for 10
executions) to 112.015 seconds (for 100 executions).
Additionally, the equation derived from the fitted
curve leads to the conclusion that, for each execution
conducted, the time increases by 1.117 seconds.

This finding implies an efficiency trade-off in the
implementation of mouse tracking tools, considering
that usability tests under this approach involve
processing mouse traces from multiple users.

Figure 8. Variation of the total data processing time with
the number of tests for the parallel approach

Similarly, in the case of the fitted equation in

Figure 8, a standard error of 0.000108 was obtained
for the slope value, and 0.006728 for the intercept
value. Meanwhile, at the MSE level, a value of
0.000078 was obtained. By calculating the standard
error of the estimated parameters, namely the slope
and intercept, it is found that the parallel approach
exhibits significantly lower standard error values
compared to those presented in the sequential
approach. This indicates less variability in the
parameters for future estimations and, consequently,
greater consistency. Additionally, it was observed
that in terms of MSE, the parallel approach shows
significantly lower values compared to the sequential
approach, indicating reduced data fitting errors and,
therefore, more consistent results.

The fitted curve in Figure 8 reveals that in the
parallel approach, there is a progressive increase in
the total processing time from 0.047 seconds (for 10
executions) to 0.446 seconds (for 100 executions).
Additionally, the equation derived from the fitted
curve leads to the conclusion that, for each execution
conducted, the time increases by 0.004 seconds.

When comparing the total execution time ranges
for different test quantities, a significant difference is
observed between the measured time values of the
parallel approach and the sequential approach, with
the resulting times of the parallel approach being
much lower than those corresponding to the
sequential approach. This conclusively demonstrates
the remarkable advantage of implementing the
parallel approach in terms of efficiency when
choosing the most suitable approach for data
processing.

 TEM Journal. Volume 13, Issue 2, pages 875-884, ISSN 2217-8309, DOI: 10.18421/TEM132-04, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 881

Similarly, it is observed that the sequential
approach has a slope 249.53125 times greater than
that of the parallel approach. This implies that, in the
sequential approach, the total execution time
increases at a faster rate relative to the number of
executions compared to the parallel approach. This
clearly highlights an advantage for the parallel
approach, as increasing the number of executions
results in a much smaller and less pronounced
increase in execution time compared to the sequential
approach.

On the other hand, Figures 9 and 10 display the
average data processing time for each of the
considered approaches. This is calculated as the total
data processing time, Tt, divided by the number of
tests, n. Thus, in Figure 9, the results obtained for the
sequential approach are presented along with a
dashed line representing the overall average time per
execution.

Figure 9. Variation of the average data processing time
with the number of tests for the sequential approach

Similarly, in Figure 10, the results obtained for

the parallel approach are presented along with a
dashed line indicating the overall average processing
time per execution.

Figure 10. Variation of the average data processing time
with the number of tests for the parallel approach

Based on the results obtained in Figures 9 and 10,
a significant difference in average times per number
of executions between the parallel and sequential
approaches can be observed. This is evident in the
overall average time obtained in all executions when
processing the test image (red dashed line in Figures
9 and 10), which is 0.042 seconds for the parallel
approach and 1.1120 seconds for the sequential
approach. Similarly, it is observed that the variation
in average times per execution for the parallel
approach ranges between 0.004 and 0.005 seconds,
while in the case of the sequential approach, the
variation is between 1.107 and 1.142 seconds. Thus,
a greater variability in times is observed in the case
of the sequential approach, while in the parallel
approach, there is greater consistency in the results.

Finally, in Figure 11, the efficiency of the parallel
approach compared to the sequential approach is
presented. This is calculated as the total processing
time of the data for the sequential approach divided
by the total processing time of the data for the
parallel approach.

Figure 11. Variation of the efficiency with the number of
tests

It can be observed that all the values obtained are

greater than 1 and even exceed 240, indicating that in
all cases the time obtained for different executions is
much lower than the time obtained for the sequential
approach. These values vary in the range of 239,826
times to 265,441 times, with the average
corresponding to a value of 252,851 times. This
means that, on average, the sequential approach
presents a total execution time 252,851 times greater
than the total execution time in the parallel approach.

4. Discussion

In this work, a contribution has been proposed
involving the design and implementation of a method
based on parallel computing for the analysis of
interaction zones in mouse trace images obtained in
usability tests under the mouse tracking approach.

 TEM Journal. Volume 13, Issue 2, pages 875-884, ISSN 2217-8309, DOI: 10.18421/TEM132-04, May 2024.

882 TEM Journal – Volume 13 / Number 2 / 2024.

Based on the results obtained in this study, it was
observed that the proposed method is significantly
more efficient than the method based on sequential
computing. This is evident in the fact that, in various
executions, the parallel computing method was, on
average, 252 times faster than the sequential method.
Furthermore, it is evident through the calculation of
MSE and the standard error of the estimated values
that the model describing the parallel approach
exhibits less variability and, therefore, greater
consistency than the model corresponding to the
sequential approach. The aforementioned is a
relevant contribution to enhance the efficiency of the
tools proposed in [21] and [25], where tools based on
sequential computing are proposed for the analysis of
zones of interest in images derived from mouse
tracking tests, involving pixel counting by zone and
respective clustering techniques.

Similarly, the approach proposed in this work is a
relevant contribution to academic and business level
for the implementation of tools based on parallel
computing for the analysis of mouse tracking tests,
since the proposed method was implemented using
open-source libraries and technologies. In this regard,
the Dask library proved to be suitable for image
processing, as it features data structures compatible
with conventional ones and has the flexibility to be
segmented into blocks for parallel processing.
Similarly, the OpenCV library demonstrated
suitability for basic image operations (image scaling,
conversion to grayscale, image binarization), which
is crucial in preprocessing mouse trace images.
Additionally, this library uses NumPy-like arrays for
various image operations, making them compatible
with the data structures employed by the Dask
library.

5. Conclusion

Considering that usability is an attribute defining

software quality, it is important to integrate different
types of usability tests into the software development
process, where mouse tracking tests stand out for
providing feedback on interface design. Thus, one of
the main advantages of usability tests under the
mouse tracking approach is the identification of areas
of interest where user interaction is concentrated,
aiming to enhance interface design by identifying key
software functionalities that may not be located in
areas of high visual hierarchy. In this way, these tests
contribute to improving user productivity, which
corresponds to one of the advantages of usability.

Taking into consideration that mouse tracking tests
involve the analysis of mouse trace images from
multiple users, one of the commitments of software
tools focused on analyzing this type of test is
efficiency.

Thus, in this work, the main contribution proposed
was the design and implementation of a method based
on parallel computing for the analysis of areas of
interest in mouse trace images. This method creates a
parallel processing block for each analyzed area. The
proposed method aims to serve as a reference for the
implementation of efficient tools for the analysis of
mouse tracking tests in the context of usability or
other application contexts.

Based on the results obtained in the proof of
concept conducted on an image from mouse tracking
test using Eclipse software by IOGraphica, it was
possible to conclude that the parallel computing
method, in addition to being effective in determining
interaction zones, is significantly more efficient than
the sequential computing method. In this regard, after
conducting multiple executions of both methods on
the same image, it was found that, on average, the
parallel computing method with four processing
blocks (one for each interaction zone) is 252 times
faster than the sequential computing method. These
results indicate that the proposed method is suitable
for integration into tools for processing images
derived from mouse tracking tests in various
application contexts.

The open-source tools employed proved to be
suitable for implementing the parallel computing
method for the analysis of interaction zones in mouse
tracking tests. Specifically, the Dask library
facilitated the division of the image into processing
blocks (one for each zone) and the parallel counting
of pixels in each block. Similarly, the OpenCV library
allowed for various preprocessing operations on
images with the mouse trace, such as conversion to
grayscale or binarization of these images. Thus, these
libraries aim to serve as a reference for consideration
in academic or business settings for the development
of tools for image analysis under the parallel
computing approach.

As a future work arising from the present research,
it is intended to: a) Build a tool supported by the
proposed approach, enabling the processing and
analysis of multiple mouse traces derived from
usability tests; b) Combine the proposed approach
with the analysis of interaction zones using
unsupervised learning techniques or clustering.

Acknowledgements

The authors express their gratitude to the University of
Cartagena and the University of Cauca for the support
received in the development of this research.

 TEM Journal. Volume 13, Issue 2, pages 875-884, ISSN 2217-8309, DOI: 10.18421/TEM132-04, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 883

References

[1]. Abbas, A. M. H., Ghauth, K. I., & Ting, C.-Y. (2022).

User Experience Design Using Machine Learning: A
Systematic Review. IEEE Access, 10, 51501-51514.
Doi: 10.1109/ACCESS.2022.3173289

[2]. Chanchí-Golondrino, G. E., Sierra Martínez, L. M., &
Campo Muñoz, W. Y. (2022). Fuzzy Logic-Based
System for the Estimation of the Usability Level in
User Tests. International Journal of Computers
Communications & Control, 17(2). Doi:
10.15837/ijccc.2022.2.4476

[3]. Haaksma, T. R., De Jong, M. D. T., & Karreman, J.
(2018). Users’ Personal Conceptions of Usability and
User Experience of Electronic and Software Products.
IEEE Transactions on Professional Communication,
61(2), 116-132. Doi: 10.1109/TPC.2018.2795398

[4]. T. Bantug, E., G. Luciano, R., & V. Bauat, R. (2021).
Heuristic Usability Evaluation: A Case Study of
Online Enrolment System of a State University.
International Journal of Advanced Engineering
Research and Science, 8(6), 360-365.
Doi: 10.22161/ijaers.86.44

[5]. Çetin, G., & Göktürk, M. (2008). A Measurement
Based Framework for Assessment of Usability-
Centricness of Open Source Software Projects. 2008
IEEE International Conference on Signal Image
Technology and Internet Based Systems, 585-592.
Doi: 10.1109/SITIS.2008.106

[6]. Dinkel, C., Billenstein, D., Goller, D., & Rieg, F.
(2018). User-oriented optimization of the GUI of a
finite element programme to enhance the usability of
simulation tools. 2018 South-Eastern European
Design Automation, Computer Engineering,
Computer Networks and Society Media Conference
(SEEDA_CECNSM), 1-5.
Doi: 10.23919/SEEDA-CECNSM.2018.8544936

[7]. Hering, D., Schwartz, T., Boden, A., & Wulf, V.
(2015). Integrating Usability-Engineering into the
Software Developing Processes of SME: A Case
Study of Software Developing SME in Germany.
2015 IEEE/ACM 8th International Workshop on
Cooperative and Human Aspects of Software
Engineering, 121-122. Doi: 10.1109/CHASE.2015.22

[8]. Li, G., He, Y., Tang, Y., Shen, X., & He, L. (2023).
Perceived Usability of Computer-Aided Engineering
Software. 2023 IEEE 28th Pacific Rim International
Symposium on Dependable Computing (PRDC), 78-
80. Doi: 10.1109/PRDC59308.2023.00019

[9]. Nielsen, J. (2012). Usability 101: Introduction to
Usability. N N group.Retrieved from:
https://www.nngroup.com/articles/usability-101-
introduction-to-usability/
[accessed: 15 November 2023].

[10]. Blanco-Gonzalo, R., Sanchez-Reillo, R.,
Goicoechea-Telleria, I., & Strobl, B. (2018). The
Mobile Pass Project: A User Interaction Evaluation.
IEEE Transactions on Human-Machine Systems,
48(3), 311-315. Doi: 10.1109/THMS.2018.2791571

[11]. Chanchí-Golondrino, G. E. (2023). Estimación del
atributo de satisfacción en test con usuarios mediante
técnicas de análisis de sentimientos. Prospectiva,
21(2), 40-50. Doi: 10.15665/rp.v21i2.3248

[12]. Obermeier, M., Braun, S., & Vogel-Heuser, B.
(2015). A Model-Driven Approach on Object-
Oriented PLC Programming for Manufacturing
Systems with Regard to Usability. IEEE Transactions
on Industrial Informatics, 11(3), 790-800.
Doi: 10.1109/TII.2014.2346133

[13]. Weichbroth, P. (2020). Usability of Mobile
Applications: A Systematic Literature Study. IEEE
Access, 8, 55563-55577.
Doi: 10.1109/ACCESS.2020.2981892

[14]. Ali, W., Riaz, O., Mumtaz, S., Khan, A. R., Saba, T.,
& Bahaj, S. A. (2022). Mobile Application Usability
Evaluation: A Study Based on Demography. IEEE
Access, 10, 41512-41524.
Doi: 10.1109/ACCESS.2022.3166893

[15]. Delgado-Aguedelo, D. M., Girón-Timaná, D.,
Chanchí-Golondrino, G. E., & Máceles-Villalba, K.
(2021). Estimate of the satisfaction attribute in user
tests from facial expression analysis. Revista
Ingenierías Universidad de Medellín, 19(36), 13-28.

[16]. Razak, F. H. A., Hafit, H., Sedi, N., Zubaidi, N. A.,
& Haron, H. (2010). Usability testing with children:
Laboratory vs field studies. 2010 International
Conference on User Science and Engineering (i-
USEr), 104-109. Doi: 10.1109/IUSER.2010.5716733

[17]. Arroyo, E., Selker, T., & Wei, W. (2006). Usability
tool for analysis of web designs using mouse tracks.
CHI ’06 Extended Abstracts on Human Factors in
Computing Systems, 484-489.
Doi: 10.1145/1125451.1125557

[18]. Navalpakkam, V., & Churchill, E. (2012). Mouse
tracking: Measuring and predicting users’ experience
of web-based content. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
2963-2972. Doi: 10.1145/2207676.2208705

[19]. Souza, K. E. S., Seruffo, M. C. R., De Mello, H. D.,
Souza, D. D. S., & Vellasco, M. M. B. R. (2019).
User Experience Evaluation Using Mouse Tracking
and Artificial Intelligence. IEEE Access, 7, 96506-
96515. Doi: 10.1109/ACCESS.2019.2927860

[20]. Katerina, T., Nicolaos, P., & Charalampos, Y.
(2014). Mouse tracking for web marketing: enhancing
user experience in web application software by
measuring self-efficacy and hesitation levels. Int. J.
Strateg. Innovative Mark, 1, 233-247.

[21]. Albornoz, D. A., Moncayo, S. A., Ruano-Hoyos, S.,
Chanchí-Golondrino, G. E., & Márceles-Villalba, K.
(2019). Software system for executing usability tests
under the mouse tracking approach, TecnoLógicas,
22, 19-31. Doi: 10.22430/22565337.1511

[22]. Aviz, I. L., Souza, K. E., Ribeiro, E., De Mello
Junior, H., & Seruffo, M. C. D. R. (2019).
Comparative study of user experience evaluation
techniques based on mouse and gaze tracking.
Proceedings of the 25th Brazillian Symposium on
Multimedia and the Web, 53-56.
Doi: 10.1145/3323503.3360623

[23]. Souza, K. E. S. D., Aviz, I. L. D., Mello, H. D. D.,
Figueiredo, K., Vellasco, M. M. B. R., Costa, F. A.
R., & Seruffo, M. C. D. R. (2022). An Evaluation
Framework for User Experience Using Eye Tracking,
Mouse Tracking, Keyboard Input, and Artificial
Intelligence: A Case Study. International Journal of
Human–Computer Interaction, 38(7), 646-660.
Doi: 10.1080/10447318.2021.1960092

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

 TEM Journal. Volume 13, Issue 2, pages 875-884, ISSN 2217-8309, DOI: 10.18421/TEM132-04, May 2024.

884 TEM Journal – Volume 13 / Number 2 / 2024.

[24]. Cegan, L., & Filip, P. (2017). Advanced web
analytics tool for mouse tracking and real-time data
processing. 2017 IEEE 14th International Scientific
Conference on Informatics, 431-435.
Doi: 10.1109/INFORMATICS.2017.8327288

[25]. Chanchí-Golondrino, G. E., Ospina-Alarcón, M., &
Campo-Muñoz, W. (2022). Application of clustering
techniques in the analysis of mouse tracking tests.
ARPN Journal of Engineering and Applied Sciences,
17(13), 1358-1363.

[26]. Fan, M., Zuo, X., & Zhou, B. (2024). Parallel
Computing Method of Commonly Used Interpolation
Algorithms for Remote Sensing Images. IEEE
Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 17, 315-322.
Doi: 10.1109/JSTARS.2023.3329018

[27]. Rakhimov, M., Mamadjanov, D., & Mukhiddinov,
A. (2020). A High-Performance Parallel Approach to
Image Processing in Distributed Computing. 2020
IEEE 14th International Conference on Application of
Information and Communication Technologies
(AICT), 1-5. Doi: 10.1109/AICT50176.2020.9368840

[28]. Wu, Q., Spiryagin, M., Cole, C., & McSweeney, T.
(2020). Parallel computing in railway research.
International Journal of Rail Transportation, 8(2),
111-134. Doi: 10.1080/23248378.2018.1553115

[29]. Oyekunle, R., Bello, O., Jubril, Q., Sikiru, I., &
Balogun, A. (2020). Usability Evaluation using Eye-
Tracking on E-Commerce and Education Domains.
Journal of Information Technology and Computing,
1(1), 1-13. Doi: 10.48185/jitc.v1i1.43

[30]. SadighZadeh, S., & Kaedi, M. (2022). Modeling user
preferences in online stores based on user mouse
behavior on page elements. Journal of Systems and
Information Technology, 24(2), 112-130. Scopus.
Doi: 10.1108/JSIT-12-2019-0264

[31]. Krassanakis, V., & Misthos, L.-M. (2023). Mouse
Tracking as a Method for Examining the Perception
and Cognition of Digital Maps. Digital, 3(2), 127-
136. Doi: 10.3390/digital3020009

[32]. Pratt, K. (2009). Design Patterns for Research
Methods: Iterative Field Research. Kpratt.
Retrieved from: https://kpratt.net/wp-
content/uploads/2009/01/research_methods.pdf
[accessed: 19 November 2023].

[33]. Anacona-Campo, F. J., Cobos-Lozada, C.-A., &
Mendoza-Becerra, M. (2020). Algoritmo greedy para
predecir el índice de servicio de pavimento basado en
agrupación y regresión lineal. Investigación e
Innovación en Ingenierías, 8(3), 119-134.
Doi: 10.17081/invinno.8.3.4708

https://kpratt.net/wp-content/uploads/2009/01/research_methods.pdf
https://kpratt.net/wp-content/uploads/2009/01/research_methods.pdf

