
TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

1618 TEM Journal – Volume 13 / Number 2 / 2024.

Execution Efficiency of the use of Array
and Linked-List Implementations of a Stack
Abstract Data Types Containing Complex

Numbers in Methods of an
Android Application

Igor Košťál P

1
P, Martin Mišút P

1

P

1
PUniversity of Economics in Bratislava, Faculty of Economic Informatics, Dolnozemská cesta 1,

Bratislava, Slovakia

Abstract – Abstract data types (ADTs) provide a way
to define data structures and the operations allowed on
them, independent of the specific implementation
details. Choosing the appropriate data type is for many
applications the most important step in their
development that affects their performance. To
investigate the most suitable stack implementation for
evaluating arithmetic expressions with complex
numbers, we developed an Android application. These
expressions may contain a larger number of complex
numbers, for example, 25, which can be enclosed in
parentheses arbitrarily. The Android application uses
an array and linked-list implementation of a stack
ADT to evaluate these expressions in its methods, as
well as a simple stack implementation that uses none
ADT. We determined a more efficient implementation
of a stack ADT and the most efficient implementation
at all by analysing the execution times of these
methods, which were evaluating the same arithmetic
expressions with complex numbers.

DOI: 10.18421/TEM132-75
34TUhttps://doi.org/10.18421/TEM132-75 U34T

Corresponding author: Igor Košťál,
University of Economics in Bratislava, Faculty of Economic
Informatics, Bratislava, Slovakia
Email: 34TUigor.kostal@euba.skU34T

Received: 28 December 2023.
Revised: 08 January 2024.
Accepted: 08 April 2024.
Published: 28 May 2024.

© 2024 Igor Košťál & Martin Mišút;
published by UIKTEN. This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivs
4.0 License.

The article is published with Open Access at
Uhttps://www.temjournal.com/

In the paper we also analyse the functioning of both
these stack ADT implementations and a simple stack
implementation that does not use an ADT.

Keywords – Abstract data type, stack ADT, array
implementation and linked-list implementation of a
stack ADT, Android application.

1. Introduction

Calling is just one of the many functions offered
by today's smartphones. An user can run often very
specific applications in a smartphone operating
system that do not relate to calling, e.g., an
interactive Android mobile application for improving
the communication skills of Arab children with
autism [1], or an Android smart parking mobile
application [2] that helps pre-book a parking space in
a university campus swiftly and easily. Thereby,
today's smartphone becomes a sophisticated
computer with a full-fledged operating system that
enables to execute specific applications of various
kinds.

Our application, the Calculator, expands the
possibilities of using an Android smartphone,
because it enables evaluating even extensive
arithmetic expressions with complex numbers. These
expressions may contain a larger number of complex
numbers, for example, 25, which can be enclosed in
parentheses arbitrarily. The calculator in the current
standard package of applications supplied with the
Android 11, 12, or 13 operating systems on new
Android smartphones does not include a module for
evaluating arithmetic expressions with complex
numbers.

As we mentioned above, a programmer
fundamentally affects the performance of an
application and its memory requirements by choosing
a suitable data type during the development of an
application.

mailto:igor.kostal@euba.sk
https://www.temjournal.com/
https://doi.org/10.18421/TEM132-75

 TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 1619

These facts highlight the high importance of this
choice. Therefore, we also dealt with creating and
selecting a suitable data type to work with complex
numbers in our Android application.

In terms of programming and the application itself
a data type is a set of values and a collection of
operations on those values. Procedural and object-
oriented programming languages have built-in data
types that developers can use immediately. They can
also create their own simple data types (structures,
enumerations, and so on) or ADTs. We have created
our own object-oriented ADTs, three classes, for our
Android application that allow it to perform
arithmetic operations with real and complex
numbers. One class represents a linked-list
implementation of a stack ADT that works with real
numbers. The next two classes represent array and
linked-list implementations of the stack ADT that
works with complex numbers. Our main aim was to
compare an execution efficiency of the use of array
and linked-list implementations of a pushdown stack
ADT containing complex numbers in methods of a
mobile Android application. Expressions that
evaluate these methods can be in a postfix or infix
form. We have wondered whether a form of complex
expressions influences an execution efficiency of
these methods. To investigate and measure this
impact, we have created four methods. Two methods
evaluate postfix arithmetic expressions with complex
numbers. They first convert the infix expressions to
postfix expressions by the conversion method and
then evaluate them. The next two methods evaluate
input infix complex expressions, but without calling
the conversion method. We have also wondered
whether the use of the objects of ADTs by member
methods for evaluating expressions with complex
numbers has an impact on their execution efficiency.
To investigate and measure this impact, we have
created the next two methods that evaluate input infix
complex expressions without using objects of ADTs.
Otherwise, they use a stack to evaluate complex
expressions, but in a simple form of an array. In
Section V we deal with the experiment, using which
we want to determine a more efficient
implementation of a stack ADT and the most
efficient implementation at all by analysing the
execution times of all methods, which were
evaluating the same arithmetic expressions with
complex numbers.

The contribution of this paper as compared to

other relevant works is:
• true ADTs were created, two classes, for working

with complex numbers in methods of an Android
application. One class represents an array
implementation, and the next class represents a
linked-list implementation of the stack ADT.

All member variables of these classes are private.
In this case client methods can access the instance
variables of objects of these classes using only
instance methods, they cannot access them
directly. The member methods of these two
classes representing ADTs create interfaces of
ADTs, and client methods can access the data of
particular ADTs only through these interfaces.

• A comparison of an execution efficiency of the
use of array and linked-list implementations of a
pushdown stack ADT was carried out containing
complex numbers in methods of a mobile Android
application.

• the study has also compared an execution
efficiency of an Android application methods
with array and linked-list implementations of a
pushdown stack ADT that were evaluating postfix
expressions with complex numbers to similar
methods that were evaluating infix expressions
with the same complex numbers.

• we have also compared an execution efficiency of
an Android application methods with an array and
linked-list implementation of a pushdown stack
ADT that were evaluating expressions with
complex numbers to methods that do not use
ADTs, and which were evaluating expressions
with the same complex numbers.

• the authors have created Android application
methods, which are able to evaluate arithmetic
expressions with complex numbers, while these
expressions may contain a larger number of
complex numbers, for example, 25, which can be
enclosed in parentheses arbitrarily. These
methods recognize operations precedence
correctly and calculate the value of such a long
expression with parentheses correctly.

The next parts of the paper are structured as

follows. Section 2, contains a summary of a research
pertaining to ADTs and a comparison of an execution
efficiency of the use of array and linked-list
implementations of a stack ADT in applications. We
briefly theoretically deal with ADTs, a stack ADT,
complex numbers, and arithmetic operations with
complex numbers in Section 3. We deal with our
ADTs and also with our Android application itself
and its architecture briefly in Section 4. In Section 5,
we deal with the experiment, using which we want to
determine the most execution efficient
implementation of the stack. Conclusion, in which
we briefly evaluate our experiment, is found in
Section 6. Section 3 provides a brief theoretical
overview of abstract data types (ADTs), focusing
specifically on stack ADTs. It also covers complex
numbers and the arithmetic operations applicable to
them.

 TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

1620 TEM Journal – Volume 13 / Number 2 / 2024.

Section 4 offers a concise introduction to the
chosen ADTs and the Android application itself,
outlining its architecture. The focus of Section 5 is
the experiment designed to identify the most
execution-efficient stack implementation. The
concluding section (Section 6) presents a brief
evaluation of the experiment's findings.

2. Related Work

We did not find studies or papers dealing with our

topic A Comparison of an Execution Efficiency of the
Use of Array and Linked-list Implementations of a
Pushdown Stack ADT Containing Complex Numbers
in Methods of an Android Application or similar to
our topic on the Web of Science, and the Scopus. In
these sources, we have found works that deal only
with parts of our topic.

Guttag [3] deals with the algebraic specification of
the semantics of an abstract data type. He also defines
an ADT: the term "abstract data type" refers to a class
of objects defined by a representation-independent
specification. He emphasizes the role of ADTs in
design of software system architecture. He argues that
ADTs provide unambiguous specifications that lead
to more efficient implementations chosen after more
is known about the behavior of the system [4].

Eliëns [5] regards abstract data types as an
essential constituent of object-oriented modelling. He
relates an encapsulation, one of the features of object-
oriented programming, to abstract data types
(classes), because their elements are usually created
using a hidden state.

We identify with these claims about ADTs in [3],
[4], [5], and with an ADT definition in [3]. This an
ADT definition and a purpose of ADTs in object-
oriented modelling that is specified in [5], satisfy
implementations of the stack ADT in the LinkedList,
cplxArray (Fig. 4), and cplxLinkedList (Fig. 5) classes
of our Android application.

Fürst et al. [6] in their study emphasize an
important advantage of using ADTs in the
development of software systems: if we specify
systems using ADTs, then they are more abstract and
thereby easier to verify than systems designed directly
without ADTs.

To this advantage we can add other properties of
such systems that use ADTs. These systems are easier
to extend, because their ADTs are easier to extend,
and they are better to maintain than systems without
ADTs. Also, from these reasons, we have created
ADTs, the LinkedList, cplxArray (Fig. 4), and
cplxLinkedList (Fig. 5) classes, in our Android
application, which create the basic building
components of its object-oriented architectural
design.

Zhong, Ishizuka, and Enari [7] emphasize a very
strong link between Object-Oriented Programming
(OOP) and an ADT: OOP design is the construction
of software as structured collections of ADTs
implementations.

The LinkedList, cplxArray, and cplxLinkedList
classes of our object-oriented Android application are
created exactly like this, a stack ADT is implemented
using an array in the cplxArray (Fig. 4) class, and a
stack ADT is also implemented using a linked list in
the LinkedList, and cplxLinkedList (Fig. 5) classes.

In other sources - books, and the Internet, we have

found studies or works that dealt with similar topics
to our topic.

For example, Agostini [8] has implemented a
stack ADT using a linked list and an array in the
Swift 3.0 programming language developed by Apple
Inc. He has compared performances between these
two implementations. A linked list implementation of
his stack ADT was much faster than an array
implementation of this stack. However, his stack
contained only simple integer data.

Our stack in both implementations in our Android
application, in a linked list and an array
implementation, contains more complicated data,
expressions with complex numbers that have
operands and operators. Therefore, a comparison of
performances of both our implementations of a stack
ADT in our Android application that is written in the
C# programming language can have different results
from his results.

Rajput-Ji [9] has implemented a stack ADT using
a linked list in the C# programming language. He has
dealt with benefits of implementing a stack using a
linked list, such as is an efficient memory usage and a
dynamic memory allocation of this implementation of
a stack. His stack contained only simple integer data.

Duggempudi [10] has implemented a stack ADT
using an array and linked list in the C++
programming language. He did not compare
performances between these two implementations.
His stack also contained only simple integer data.

K Hong [11] has implemented a non-generic stack
ADT using an array of integer numbers, a generic
stack ADT using an array of floating-point numbers
and an array of strings, and a non-generic stack ADT
containing integer numbers using a linked list in the
C++ programming language. He did not compare
performances between array and linked
implementations. His stacks also contained only
simple data: integer numbers, floating-point numbers,
and strings.

Sedgewick [12] has created an ADT, the Complex
class, to work with complex numbers.

 TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 1621

However, this ADT does not use a stack ADT to
store complex numbers, their real and imaginary parts
are stored in private member variables of the float
type, and this ADT contains one arithmetic operation,
the multiplication of complex numbers. This
operation is executed by the overloaded operator *,
the Complex class contains the operator* method.

The cplxArray (Fig. 4), and cplxLinkedList (Fig. 5)
classes of our Android application for working with
complex numbers use an array and linked-list
implementation of a stack ADT, and methods of these
classes can perform all arithmetic operations with
complex numbers. Both these implementations of a
stack ADT contain more complicated data
(expressions with complex numbers that consist of
operands and operators) than stacks ADTs in [8], [9],
[10], [11], and [12].

The next section theoretically deals with ADTs, a
stack ADT, complex numbers, and arithmetic
operations with complex numbers.

3. ADTs, a Stack ADT, Arithmetic Operations

with Complex Numbers

An abstract data type (ADT) is a data type (a set of

values and a collection of operations on those values)
that is accessed only through an interface [13], [14].
We refer to a program or a method that uses an ADT
as a client, and a class that specifies the data type as
an implementation [13].

Fundamental ADTs are stacks and queues that are
implemented using classical data structures (arrays,
linked lists, and strings).

A pushdown stack is an ADT that comprises two
basic operations: insert (push) a new item, and delete
(pop) the item that was most recently inserted [13]. A
pushdown stack is a LIFO (Last In, First Out) data
structure [15]. It is the ideal mechanism for evaluating
postfix arithmetic expressions, but also for converting
an infix expression, for example, (2 + 3i) * ((-4 - 3i)
+ (2 + 4i)), to the postfix expression 2 3i -4 -3i 2 4i +
*. In a postfix expression that does not need
parentheses each operator appears after its two
arguments. This is an important property of a postfix
expression for which this expression is suitable for
evaluating by a stack (Fig. 8 and Fig. 10). This
implies that the pushdown stack appears to be a very
suitable data structure that can be used for evaluating
postfix arithmetic expressions with complex numbers.
However, which implementation of the pushdown
stack, array or linked-list, is more execution efficient?
This is the main subject of our research. For this
purpose, we have created the Calculator as an
Android application that can evaluate internal postfix
arithmetic expressions with complex numbers using
the array and linked-list implementation of the

pushdown stack ADT as well as using a simple stack
implementation without the use of an ADT.

A complex number z is any expression of the form
z = a + bi, where a (the real part of z) and b (the
imaginary part of z) are real numbers and i is the
imaginary unit that satisfies i2 = −1 [16]. The
expression a + bi is called the algebraic
representation (form) of the complex number z [17].

Using algebraic representations of complex
numbers, the arithmetic operations, the addition,
subtraction, multiplication, and division, with
complex numbers z1 = a + bi and z2 = c + di can be
performed by the following formulas [17], [18], [19],
[20], [21]

𝑧1 ± 𝑧2 = (𝑎 ± 𝑐) + (𝑏 ± 𝑑)𝑖 (1)

𝑧1. 𝑧2 = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖 (2)
𝑧1
𝑧2

 = 𝑧1∙ 𝑧2
𝑧2∙𝑧2

= 𝑎𝑐+𝑏𝑑
𝑐2+𝑑2

+ 𝑏𝑐−𝑎𝑑
𝑐2+𝑑2

 𝑖 (3)

These formulas are written into the source code of
the evaluate_CPLXexp method of our Android
application, which evaluates elementary arithmetic
expressions with complex numbers, and which is
called by all methods that evaluate the input infix
arithmetic expressions with complex numbers. We
deal with our Android application, its ADTs and its
important methods in the next chapter.

4. An Android Application that Uses ADTs

We have created the Calculator as the Android

application, which is able to evaluate arithmetic
expressions with complex numbers. These
expressions may contain a larger number of complex
numbers, for example, 25, which can be enclosed in
parentheses arbitrarily (Fig. 15). Our Android
application recognizes operations precedence
correctly and calculates the value of such a long
expression with parentheses correctly. The calculator
in the current standard package of applications
supplied with the Android 11, 12 or 13 operating
system on new Android mobile phones does not
include a module for evaluating arithmetic
expressions with complex numbers.

We have developed our Android application in the
C# programming language and in the development
environment Microsoft Visual Studio 2019
Enterprise. It was developed as a single-page
Xamarin.Forms application. The target operating
system of this application is the Android 9 Pie and
higher versions.

We have created a skeleton of our cross-platform
Xamarin.Forms solution by a solution template.

 TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

1622 TEM Journal – Volume 13 / Number 2 / 2024.

It has created three projects: one common project
(the Portable Class Library project) and two platform
projects - for iOS, and Android. The common project
was built into a dynamic-link library (DLL) that is
referenced by both the individual platform projects
[22]. The source code of the common project is
divided into four source files:

App.xaml - this XAML (Extensible Application
Markup Language) file contains the x:Class
specification, which indicates that the App class in the
calcCPLX namespace derives from the Application
class.

<?xml version="1.0" encoding="utf-8" ?>
<Application
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="calcCPLX.App">
 <Application.Resources></Application.Resources>
</Application>

Figure 1. The ‘App.xaml’ file

App.xaml.cs - this .cs file contains the App class
definition. At run time, the constructor of the App
class instantiates the MainPage class and sets an
instance of this class to the MainPage property of the
App class. The MainPage constructor (defined in the
MainPage.xaml.cs code-behind file) calls the
InitializeComponent method (defined in the
MainPage.xaml.g.cs generated file), and the
InitializeComponent method calls the LoadFromXaml
method. It loads the MainPage.xaml file and parses it,
instantiating and initializing all the elements in this
XAML file except for the root element, which already
exists [22]. The instance of the App class is an
important part of the startup code of our Android
application.

namespace calcCPLX {
 public partial class App : Application {
 public App() { MainPage = new calcCPLX.MainPage();
} . . . }

Figure 2. The part of the ‘App.xaml.cs’ file

MainPage.xaml - this XAML file contains the

definition of the Android application tree-structured
user interface that was created by XAML. Objects of
all controls (buttons and labels) are instantiating and
initializing in a XAML code of this file.

MainPage.xaml.cs - this .cs file and the
MainPage.xaml file contribute to the MainPage class
that derives from the ContentPage class and that is
defined in this MainPage.xaml.cs code-behind file.
The MainPage class is used to create the underlying
logic of the user interface of our Android application.
The user interface consists of only a single page (Fig.
15).

The MainPage class includes event handlers of all
controls (buttons and labels) of this user interface and
helper methods. These event handlers and helper
methods are member methods of this class. The
MainPage class also contains two important nested
structures and five important nested classes, which
create ADTs.

The App.xaml.cs and MainPage.xaml.cs are code-
behind files of the App.xaml and MainPage. xaml
files.

During building the Xamarin.Forms solution all its
projects were built.

When the iOS platform project was built, it needed
to use the Apple compiler on the Mac to generate
native iOS machine code from the C# Intermediate
Language (IL) [22]. We did not use this compiler on
the Mac to build the iOS platform project into the
final iOS application.

When the Android platform project was built into
the Android application, the Xamarin C# compiler
generated IL, which runs on a version of Mono on the
Android device alongside the Java engine, but the
API calls from the application are pretty much the
same as though the application were written in Java
[22].

4.1. Nested Structures and Nested Classes (ADTs)

within the MainPage Class

Two structures cplx_str and cplx are declared

within the MainPage class.
The cplx_str structure type is used to create arrays

of this type. Real and imaginary parts of complex
numbers in the form of strings are stored into the
inner variables of elements of such arrays by the
InfixToPostfixCPLX member method of the
MainPage class.

The cplx structure type is used in the constructor
of the cplxArray class to create a dynamic array of
this type that represents a stack containing complex
numbers in an array implementation of a stack ADT.
This structure type is also used in the constructor of
the cplxNode class to create data parts of data
elements of a linked list that represents a linked-list
implementation of the stack ADT (the cplxLinkedList
class) working with complex numbers. This structure
type is also used to create local variables and return
values of various member methods of the MainPage
class, for example, evaluate_CPLXexp,
EvalCPLXPostfixByArrayStack, EvalCPLXPostfixBy
ObjArrayStack, EvalCPLXPostfixByLinkedListStack
and EvalCPLX_INFIXByArray Stack.

Five nested classes LinkedList, Node, cplxArray,

cplxLinkedList and cplxNode are defined within the
MainPage class (Fig. 3), too.

 TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 1623

The LinkedList class represents a linked-list
implementation of a stack ADT that works with real
numbers. The Node class object represents one data
element (node) of a linked list created using the
constructor of the LinkedList class. The cplxArray
class represents an array implementation, and the
cplxLinkedList class represents a linked-list
implementation of the stack ADT. Both these
implementations work with complex numbers. The
cplxNode class object represents one data element
(node) of a linked list created using the constructor of
the cplxLinkedList class.

All three ADTs have been created truly abstract.
All member variables in the LinkedList, cplxArray
and cplxLinkedList classes are private, in this case
client methods can access the instance variables of
objects of these classes using only instance methods,
they cannot access them directly.

The member methods of these three classes
representing ADTs create interfaces of ADTs, and
client methods can access the data of particular ADTs
only through these interfaces.

Figure 3. The class class

public struct cplx {
 public double re;
 public double im;
}

public class cplxArray {
 private cplx[] stackCplx;
 private int count;
 private int peek;
 private MainPage objMainPage;

 public cplxArray(int x) {
 stackCplx = new cplx[x];
 count = 0;
 peek = 0;
 }

 public void STACKpushArr(cplx data) {
 stackCplx[peek++] = data;
 count++;
 }

 public cplx STACKpopArr() {
 if (count > 0) {
 count--;
 return stackCplx[--peek];
 }
 else {
 objMainPage.result_Lbl.Text = "No
 element exists in this array.";
 cplx empty_value;
 empty_value.re = 0;
 empty_value.im = 0;
 return empty_value;
 }
 }
 }

Figure 4. The declaration of the ‘cplx’ nested structure and
the definition of the ‘cplxArray’ nested class (ADT)

 TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

1624 TEM Journal – Volume 13 / Number 2 / 2024.

public class cplxLinkedList
{
 private cplxNode head;
 private int count;
 private MainPage objMainPage;

 public cplxLinkedList()
 {
 head = null;
 count = 0;
 }

 public void STACKpush(cplx data)
 {
 cplxNode newNode = new cplxNode() { value = data };
 if (head == null)
 head = newNode;
 else
 {
 newNode.next = head;
 head = newNode;
 }
 count++;
 }

 public cplx STACKpop()
 {
 if (count > 0)
 {
 cplx removed_value = head.value;
 head = head.next;
 count--;
 return removed_value;
 }
 else
 {
 objMainPage.result_Lbl.Text = "No element
 exists in this array.";
 cplx empty_value;
 empty_value.re = 0;
 empty_value.im = 0;
 return empty_value;
 }
 }
}

public class cplxNode
{
 public cplx value;
 public cplxNode next;
}

Figure 5. The definitions of the ‘cplxLinkedList’ and ‘cplxNode’ nested classes (ADTs)

 TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 1625

Figure 6. The code map of the Android application

4.2. Member Methods of the MainPage Class that use
ADTs

The EvalCPLXPostfixByObjArrayStack, Eval

CPLXPostfixByLinkedListStack, EvalCPLX_INFIXBy
ObjArrayStack and EvalCPLX_INFIXByLinkedList
Stack member methods use objects of created ADTs
for evaluating arithmetic expressions with complex
numbers. The EvalCPLXPostfixByObjArrayStack and
EvalCPLXPostfixByLinkedListStack methods evaluate
postfix arithmetic expressions with complex numbers.
Therefore they first convert the input infix
expressions to internal postfix expressions by the
InfixToPostfix CPLX method and then evaluate them.

The InfixToPostfixCPLX conversion method uses

two stacks for converting an input infix arithmetic
expression with complex numbers to a postfix
expression. It uses the CplxStrs 100-element array of
structure variables of the cplx_str type as a stack for
storing operands. The index of the top of this stack is
always the maximum index of the used element. The
method uses the stack_op object of the System.
Collection.Generic.Stack<T> is library class [23] as a
stack for storing operators and parentheses. The top of
this stack is always an element with index 0. The
method assumes that particular complex numbers in
an infix expression are enclosed in parentheses.

 TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

1626 TEM Journal – Volume 13 / Number 2 / 2024.

These parentheses always indicate the beginning
and end of a given complex number for the
InfixToPostfixCPLX method, but during a conversion
they are not processed, they are ignored by this
method. Similarly, all other member methods that
work with the input infix expression assume that the
particular complex numbers in this expression are
enclosed in parentheses. These are processed by these
methods in the same way as by the
InfixToPostfixCPLX method. The Fig. 7 shows the
states of both stacks of the InfixToPostfixCPLX
method during converting the infix expression (2 +
3i) * ((-4-3i) + (2 + 4i)) to postfix. The method
proceeds from left to right through the expression. If
it encounters a complex number (operand), it writes it
at the top of the CplxStrs stack. If it encounters an
operator in an infix expression, it successively
examines whether the priority of the operators in the
stack_op stack is greater than or equal to the priority
of the being processed operator. If such operator is
found in the stack_op stack, it is removed from this
stack and inserted at the top of the CplxStrs stack of
operands. Then the being processed operator is
inserted at the top of the stack_op stack. If the method
encounters a left parenthesis, it pushes this
parenthesis at the top of the stack_op stack of
operators. If it encounters a right parenthesis, it
removes all operators "above" the left parenthesis
from the stack_op stack and successively stores them
at the top of the CplxStrs stack. Then the method
deletes the left parenthesis from the stack_op stack,
removes all remaining operators from this stack, and
successively stores them at the top of the CplxStrs
stack. Finally, the method returns a reference to the
CplxStrs stack, in which is stored the resulting postfix
expression 2 3 -4 -3 2 4 + *, which the method
created from the input infix expression (2 + 3i) * ((-4-
3i) + (2 + 4i)).

The EvalCPLXPostfixByObjArrayStack (CM2)

and EvalCPLXPostfixByLinkedListStack (CM3)
methods, which have the most efficient written source
codes from all our methods, and which use the objects
of ADTs, the cplxArray and cplxLinkedList classes,
for implementing a stack and operations in it, are the
subject of our research, so we deal with them in more
detail. As we mentioned above, these methods first
convert an input infix expression to postfix using the
InfixToPostfixCPLX conversion method. Then the
methods read this postfix expression from left to right
and evaluate it.

The CM2 method creates the arrayStack object of
the cplxArray class. The stackCplx instance variable
of this object is the 100-element array of the cplx type
that represents the stack of the CM2 method.

The CM3 method creates the lnklist object of the
cplxLinkedList class. This object is the linked list that
represents the stack of the CM3 method.

Figure 7. States of the ‘CplxStrs’ and ‘stack_op’ stacks of
the ‘InfixToPostfixCPLX’ method during conversion of the
input infix expression (2 + 3i) * ((-4-3i) + (2 + 4i)) to the
output postfix expression 2 3 -4 -3 2 4 + *

Figure 8. States of the ‘stackCplx’ stack (the instance
variable of the ‘arrayStack’ object) of the

‘EvalCPLXPostfixByObjArrayStack’ (CM2) method
during evaluating the postfix expression 2 3 -4 -3 2 4 + *.
The figure shows only the used elements of the ‘stackCplx’

100-element array (the stack) in particular phases of
processing the expression by the CM2 method. The

‘stackCplx’ 100-element array is allocated throughout the
lifetime of the ‘arrayStack’ object

 TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 1627

The STACKpushArr and STACKpopArr instance
methods of the arrayStack object created by the CM2
method and STACKpush and STACKpop instance
methods of the lnklist object created by the CM3
method use the CM2 and CM3 methods to push and
pop operands and results of particular operations at
the top and from the top of their stacks.

The source codes of both methods are almost
identical. They differ only in the used object of an
ADT. Therefore, their functioning is very similar. We
will describe how the EvalCPLXPostfixByObj
ArrayStack (CM2) method works. This method reads
a postfix expression from left to right. If it encounters
an operand, it pushes this operand onto the stack. If
the method encounters an operator, it pops the top
two operands from the stack, performs the
corresponding operation on them, and pushes its
result at the top of the stack. When all operators in the
postfix expression have been processed, the result of
the evaluation of the postfix expression that the
method returns is at the top of the stack.

public cplx EvalCPLXPostfixByObjArrayStack(
 string[] InfixArr_strs)
/ public cplx EvalCPLXPostfixByLinkedListStack(
 string[] InfixArr_strs) {
 // converting an input infix expression to postfix using
 // the 'InfixToPostfixCPLX' conversion method
 cplx_str[] PostFixArrCplx_strs =
 InfixToPostfixCPLX(InfixArr_strs);
 // initializing an empty stack
 cplxArray arrayStack = new cplxArray(100);
 / cplxLinkedList lnklist = new cplxLinkedList();
 int i = 0;
 while (PostFixArrCplx_strs[i].re != null) {
 string str = PostFixArrCplx_strs[i].re;
 double operand_re = 0;
 // If the scanned string is an operand,
 if (Double.TryParse(str, out operand_re)) {
 cplx operand; operand.re = operand_re;
 operand.im = Double.Parse(PostFixArrCplx_strs[i].im);
 // push it to the stack.
 arrayStack.STACKpushArr(operand);
 / lnklist.STACKpush(operand); }
 // If the scanned string is an operator,
else if((str == "+") || (str == "-") || (str == "*") ||(str == "/"))
{ // pop the top two operands from the stack,
 cplx operand2 = arrayStack.STACKpopArr();
 / cplx operand2 = lnklist.STACKpop();
 cplx operand1 = arrayStack.STACKpopArr();
 / cplx operand1 = lnklist.STACKpop();
 // perform the corresponding operation on them,
 // and push its result at the top of the stack.
 arrayStack.STACKpushArr(evaluate_CPLXexp(
 operand1, str, operand2));
 / lnklist.STACKpush(evaluate_CPLXexp(
 operand1, str, operand2)); } i++; }
 return arrayStack.STACKpopArr();
 / return lnklist.STACKpop(); }

Figure 9. The source codes of the
‘EvalCPLXPostfixByObjArrayStack’ (CM2) and

‘EvalCPLXPostfixByLinkedListStack’ (CM3) methods.
(Differences in the CM3 method source code are written in

blue.)

Figure 10. States of the ‘lnklist’ stack of the
‘EvalCPLXPostfixByLinkedListStack’ (CM3) method

during evaluating the postfix expression 2 3 -4 -3 2 4 + *.
The figure shows the actual occupation of memory by the
‘lnklist’ object, the linked list that represents the stack, in

particular phases of processing the expression by the CM3
method. The stack occupies no additional memory space

We have wondered whether the conversion of the

input infix complex expression of the CM2 and CM3
methods to the postfix by the InfixToPostfixCPLX
method has an effect on their execution efficiency. To
investigate and measure this impact, we have created
the EvalCPLX_INFIXByObjArrayStack (CM5) and
EvalCPLX_INFIXByLinkedListStack (CM6)
methods, which evaluate input infix complex
expressions, but without calling the
InfixToPostfixCPLX conversion method.

The CM5 and CM6 methods also use the objects
of ADTs, the cplxArray and cplxLinkedList classes,
for implementing a stack and operations in it. These
methods do not evaluate postfix expressions. They
work directly with input infix expressions that
successively convert to elementary postfix
expressions, which they immediately evaluate using
the stack. From the results of elementary postfix
expressions they successively assemble the result of
the evaluation of the input infix expression.

The CM5 method creates the arrayStack object of
the cplxArray class. The stackCplx instance variable
of this object is the 100-element array of the cplx type
that represents the stack of the CM5 method. The
CM6 method creates the lnklist object of the
cplxLinkedList class. This object is the linked list that
represents the stack of the CM6 method.

 TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

1628 TEM Journal – Volume 13 / Number 2 / 2024.

The STACKpushArr and STACKpopArr instance
methods of the arrayStack object created by the CM5
method and STACKpush and STACKpop instance
methods of the lnklist object created by the CM6
method use the CM5 a CM6 methods to push and pop
operands and results of particular operations at the top
and from the top of their stacks. Besides these stacks
of operands, each method uses its own
operators_stack stack of operators and parentheses
created as the object of the System.Collection.
Generic.Stack<T> library class [23]. These stacks
have tops in elements with indexes 0. The methods
use them to push and pop operators and parentheses
of the input infix expression.

The source codes of both methods are almost
identical. They differ only in the used object of an
ADT. Therefore, their functioning is very similar. We
will describe how the EvalCPLX_
INFIXByObjArrayStack (CM5) method works.

Figure 11. States of the ‘stackCplx’ and ‘operators_stack’
stacks of the ‘EvalCPLX_INFIXByObjArrayStack’ (CM5)

method during evaluating the input infix expression
(2 + 3i) * ((-4-3i) + (2 + 4i))

The method proceeds from left to right through the
infix expression. If it encounters a complex number
(operand), it writes this operand at the top of the
stackCplx stack. If it encounters an operator in an
infix expression, it successively examines whether the
priority of the operators in the operators_stack stack
is greater than or equal to the priority of the being
processed operator.

If such operator is found in the operators_stack
stack, it is popped from this stack, the method
performs the corresponding operation on the top two
operands from the stackCplx stack and pushes its
result at the top of the stackCplx stack. Then the being
processed operator is inserted at the top of the
operators_stack stack. If the method encounters a left
parenthesis, it pushes this parenthesis at the top of the
operators_stack stack of operators. If it encounters a
right parenthesis, it successively performs all the
operations specified by the operators placed "above"
the left parenthesis in the operators_stack stack, i.e.,
it successively reads and removes the operator from
the top of this stack, it performs the corresponding
operation on the top two operands from the stackCplx
stack and writes its result at the top of this stack. Then
the method deletes the left parenthesis from the
operators_stack stack and performs the
corresponding operations with the remaining
operators in this stack in the same way as described in
the previous sentence. Finally, the method returns an
element from the top of the stackCplx stack that
contains the result of evaluating the input infix
expression.

4.3. Member Methods of the MainPage Class that do not
use ADTs

We have also wondered whether the use of the

objects of ADTs by member methods for evaluating
expressions with complex numbers has an impact on
their execution efficiency. To investigate and measure
this impact, the EvalCPLXPostfixByArrayStack
(CM1) and EvalCPLX_INFIXByArrayStack (CM4)
methods that evaluate input infix complex
expressions without using objects of ADTs were
created. Otherwise, they use a stack to evaluate
complex expressions, but in a simple form of an
array.

The CM1 method, which evaluates a postfix
expression, works very similar to the CM2 method.
The difference how it works is that it does not use the
object of an ADT. The method implements a stack of
operands and results of operations in a postfix
expression in the stackCplx 100-element array of the
cplx type.

The CM4 method, which evaluates the input infix
expression directly, works very similar to the CM5
method. The difference how it works is that it does
not use the object of an ADT. The method
implements a stack of operands and results of
operations in elementary postfix expressions in the
stackCplx 100-element array of the cplx type.

 TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 1629

5. Experiment, its Results, and their Brief
Analysis

The use of the array implementation of the stack

ADT in the EvalCPLXPostfixByObjArrayStack
(CM2) method should be more efficient than the use
of the linked-list implementation of the stack ADT in
the EvalCPLXPostfixByLinkedListStack (CM3)
method, if both methods evaluate the same arithmetic
expressions with complex numbers. Our assumption
results from the fact that the list implementation uses
more execution time for push and pop operations than
the array implementation, because it allocates
memory for each push and deallocates memory for
each pop operation.

We have wondered what number of complex
numbers in the expression is being evaluated will
make a difference in execution efficiency of the use
of these two implementations obvious. Verifying
these assumptions was the main subject of our
research. However, we have also wondered whether it
is possible to create methods for evaluating complex
expressions using a stack even with greater execution
efficiency than have the CM2 and CM3 methods. We
assume that it is possible to develop such methods. To
verify this assumption, we have created the
EvalCPLX_INFIXByObjArrayStack (CM5) and
EvalCPLX_INFIXByLinkedListStack (CM6) methods
that use the same ADTs as the CM2 and CM3
methods, but do not convert the input infix expression
to postfix by calling the InfixToPostfixCPLX method.
To verify this assumption, we have also created the
EvalCPLXPostfixByArrayStack (CM1) method,
which evaluates a postfix expression, works very

similar to the CM2 method, but does not use the
object of an ADT, and the
EvalCPLX_INFIXByArrayStack (CM4) method that
directly evaluates an input infix expression, works
very similar to the CM5 method, but does not use the
object of an ADT.

To verify all these assumptions, we carried out an
experiment using our Android application, the
Calculator. This application was running on the
Android 9.0 Pie emulator, and the emulator on the
Microsoft Windows 10 Home operating system. The
experiment was performed on the computer that was
equipped with the following basic hardware:

Intel Core i7-4700MQ (6MB Cache, 2.40 GHz, 5
GT/s Bus Speed, 4 Cores, 8 Threads), RAM: 8 GB.

Our Android application includes all the CM1,
CM2, CM3, CM4, CM5, and CM6 methods. Using
these methods, the Calculator can evaluate
expressions with complex numbers, accurately
measure the execution times of each method, and
store them into the LogFileAndroidApp.txt disk file.
During the experiment, the Calculator evaluated each
of the 24 expressions using its own CM1, CM2, CM3,
CM4, CM5, and CM6 methods and stored all
measured execution times into the LogFileAndroid
App.txt disk file. 24 expressions with complex
numbers that were evaluated by Android application
particular methods were created as follows: the E2
expression contained 2 complex numbers, the E3
expression contained 3 complex numbers… the E25
expression contained 25 complex numbers with any
number of pairs of parentheses. The E25 expression is
shown in an input-output text box of the Calculator in
Fig. 15.

Figure 15. The Calculator showing the result of the E25 expression evaluation by the CM5 method (left) and the
execution times from the ‘LogFileAndroidApp.txt’ disk file (right)

 TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

1630 TEM Journal – Volume 13 / Number 2 / 2024.

Execution times of these particular methods
evaluating these expressions with complex numbers
are shown in the following graphs.

6. Discussion

Several facts result from a comparison of the

execution times of the particular methods (Fig. 12).
The use of the array implementation of the stack ADT
in the CM2 and CM5 methods is more execution
efficient than the use of the linked-list implementation
of the stack ADT in the CM3 and CM6 methods. The
difference in execution efficiency between the array
and linked-list implementation of the stack ADT
seems to be more obvious with the increasing number
of complex numbers in the expression is being
evaluated (approximately from the number of 18)
(Fig. 13). These facts confirm the main assumptions
of our research. From the results of the experiment it
is also clear that the CM4, CM5, and CM6 methods
that evaluate the input infix expression directly and
do not use the InfixToPostfixCPLX method to convert

this expression are more execution efficient than the
CM1, CM2, and CM3 methods, which first convert
this input infix expression to postfix by the
InfixToPostfixCPLX method and then they evaluate it.

The most execution effective method is the
EvalCPLX_INFIXByArrayStack (CM4) method, this
is more visible from the number of 17 complex
numbers in an expression. This method evaluates the
input infix expression directly and does not use an
ADT. However, at the same time, we have to add that
the differences in the execution times of the CM4
method and the second most execution efficient the
CM5 method, which uses the object of an ADT, are
very minor, from 0.0003 ms to 0.0026 ms (Fig. 14).
In addition, since the CM4 method does not use an
ADT, it has to perform all operations with operands
onto the stack by its own code. Therefore, it has more
expansive and more complicated source code that is
harder to modify and worse to maintain during
developing newer versions of the Calculator than
shorter and simpler the CM5 method source code.

Figure 12. Execution times of Android application particular methods evaluating expressions with complex numbers

Figure 13. Execution times of Android application particular methods evaluating expressions with 15…25 complex
numbers

 TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

TEM Journal – Volume 13 / Number 2 / 2024. 1631

Figure 14. Differences of execution times of the EvalCPLX_INFIXByObjArrayStack’ (CM5) and ‘EvalCplX

7. Conclusion

The results of the experiment have confirmed our

basic assumption. The use of the array
implementation of the stack ADT in the Android
application methods evaluating expressions with
complex numbers is more execution efficient than the
use of the linked-list implementation of the stack
ADT in other methods of the same Android
application evaluating the same complex expressions
(Fig. 12). The difference in the execution efficiency
of both implementations is more evident when
expressions with a larger number of complex
numbers is evaluating, from the number of 18
numbers in our case (Fig. 13).

It is also evident from the results of the experiment
that the CM4, CM5, and CM6 methods that do not
use the InfixToPostfixCPLX method to convert the
input infix expression to postfix are more execution
efficient than the CM1, CM2, and CM3 methods that
perform this conversion by this method (Fig. 12).
This effect is more evident from the number of 16
complex numbers in the expression (Fig. 13). The
most execution efficient method in our experiment,
although with minimal differences in execution times
from the second most efficient the
EvalCPLX_INFIXByObjArrayStack (CM5) method,
is the EvalCPLX_INFIXByArrayStack (CM4)
method (Fig. 14), which evaluates the input infix
expression directly using the stack implemented by a
simple array of the cplx structure type variables,
without the use of an ADT and without the use of the
InfixToPostfixCPLX conversion method.

Our conclusion is: if we need to evaluate
expressions with a larger number of complex
numbers in an Android application, and from this
reason to work with a large stack, also if we want to
evaluate these expressions with high execution

efficiency and if we also want to allow an efficient
maintenance and expansion of this application, then it
is advantageous to use the array implementation of
the stack ADT in the methods of this application and
evaluate infix expressions directly in them (the CM5
method in our case). However, if we want to evaluate
expressions with a smaller number of complex
numbers in such an Android application and if we
also want to allow an efficient maintenance and
expansion of this application, then it is advantageous
to use the linked-list implementation of the stack
ADT in methods of this application and evaluate infix
expressions directly in them (the CM6 method in our
case). The linked-list implementation of the stack
ADT works with memory very efficiently, however,
it has execution efficiency slightly less than the array
implementation of the stack ADT.

References:

[1]. Wali, A., Alfrihidi, M., Alasiri, N., & Alsabei, N.

(2023). Aawn: An Interactive Mobile Application for
Improving the Communication Skills of Arab
Children with Autism. TEM Journal, 12(3), 1307-
1315.

[2]. Alkhuraiji, S. (2020). Design and Implementation of
an Android Smart Parking Mobile Application. TEM
Journal, 9(4), 1357-1363.

[3]. Guttag, J. (1977). Abstract data types and the
development of data structures. Communications of
the ACM, 20(6), 396-404.

[4]. Girard, J. F., & Koschke, R. (2000). A comparison of
abstract data types and objects recovery techniques.
Science of Computer Programming, 36, 149-181.
Doi: 10.1016/ S0167-6423(99)00035-0.

[5]. Eliëns, A. P. W. (2000). Principles of Object-Oriented
Software Development, (2nd ed.). Harlow, England:
Addison-Wesley.

 TEM Journal. Volume 13, Issue 2, pages 1618-1632, ISSN 2217-8309, DOI: 10.18421/TEM132-75, May 2024.

1632 TEM Journal – Volume 13 / Number 2 / 2024.

[6]. Fürst, A., Hoang, T. S., Basin, D., Sato, N., &
Miyazaki, K. (2016). Large-scale system development
using abstract data types and refinement. Science of
Computer Programming, 131, 59-75.
Doi: https://doi.org/10.1016/j.scico.2016.04.010.

[7]. Zhong, Y., S. Ishizuka, S., & Enari, R. (1988).
Integrating abstract data types with object-oriented
programming by specification-based approach.
Proceedings. 1988 International Conference on
Computer Languages, Miami Beach, Florida, USA,
October 9-13, 1988, 202-209.
Doi: 10.1109/ICCL.1988.13066.

[8]. Agostini, D. (2017). Implementing a stack using a
linked list data structure. Agostini.tech. Retrieved
from: https://agostini.tech/2017/01/04/implementing-
a-stack-using-a-linked-list-data-structure/
[accessed: 18 October 2023].

[9]. Rajput-Ji. (2023). Implement a stack using singly
linked list. Geeks for Geeks. Retrieved
from: https://www.geeksforgeeks.org/implement-a-
stack-using-singly-linked-list/ [accessed: 18 October
2023].

[10]. Duggempudi, A. R. (2023). Implementing a stack
using an array and linked list. Iq.opengenus.
Retrieved from: https://iq.opengenus.org/implement-
stack-using-array-and-linked-list/
[accessed: 22 October 2023].

[11]. K Hong. (2023). Algorithms - stack data structure.
Bogo To Bogo Retrieved from:
https://www.bogotobogo.com/Algorithms/stacks.php
[accessed: 03 November 2023].

[12]. Sedgewick, R. (1998). Algorithms in C++ parts 1-4,
Fundamentals, Data Structures, Sorting, Searching,
(3rd ed.) Addison-Wesley Publishing Company, Inc.

[13]. Sedgewick, R. (1998). Algorithms in C parts 1-4.
Fundamentals, Data Structures, Sorting, Searching,
(3rd ed.). Addison-Wesley Publishing Company, Inc.

[14]. Dale, N., & Walker, H. M. (1996). Abstract Data
Types: Specifications, Implementations, and
Applications. Jones & Bartlett Learning.

[15]. Dale, N. (2003). C++ Plus Data Structures. Jones
and Bartlett Publishers, Inc. Sudbury, Massachusetts,
Boston Toronto London Singapure.

[16]. Mokhithi, M., & Shock, J. (2020). Introduction to
complex numbers. Open. Uct. Retrieved
from: https://open.uct.ac.za/server/api/core/bitstreams/
a076364f-b68d-4685-922f-0245d9f248fb/content
[accessed: 07 November 2023].

[17]. Andreescu, T., & Andrica, D. (2014). Complex
Numbers from A to ... Z. Springer Science+Business
Media New York. Doi: 10.1007/978-0-8176-8415-0.

[18]. Craats, J. (2022). An introduction to complex
numbers. Staff. Retrieved from:
https://staff.fnwi.uva.nl/j.vandecraats/ComplexNumbe
rs.pdf [accessed: 07 November 2023].

[19]. Bartsch, H. J. (1987). Mathematische Formeln. VEB
Fachbuchverlag, DDR-7031 Leipzig.

[20]. Reade, J. B. (2003). Calculus with Complex
Numbers. London and New York: Taylor & Francis.

[21]. Roy, S. C. (2007). Complex Numbers, Lattice
Simulation and Zeta Function Applications.
Woodhead Publishing.

[22]. Petzold, Ch. (2016). Creating Mobile Apps with
Xamarin.Forms. Xamarin, Inc., Microsoft Press.

[23]. Microsoft Corporation. (2022). Stack<T> class.
learn Microsoft. Retrieved
from: https://learn.microsoft.com/en-
us/dotnet/api/system.collections.generic.stack-
1?view=net-7.0#code-try-4
[accessed: 09 November 2023].

https://agostini.tech/2017/01/04/implementing-a-stack-using-a-linked-list-data-structure/
https://agostini.tech/2017/01/04/implementing-a-stack-using-a-linked-list-data-structure/
https://www.geeksforgeeks.org/implement-a-stack-using-singly-linked-list/
https://www.geeksforgeeks.org/implement-a-stack-using-singly-linked-list/
https://iq.opengenus.org/implement-stack-using-array-and-linked-list/
https://iq.opengenus.org/implement-stack-using-array-and-linked-list/
https://www.bogotobogo.com/Algorithms/stacks.php
https://open.uct.ac.za/server/api/core/bitstreams/a076364f-b68d-4685-922f-0245d9f248fb/content
https://open.uct.ac.za/server/api/core/bitstreams/a076364f-b68d-4685-922f-0245d9f248fb/content
https://staff.fnwi.uva.nl/j.vandecraats/ComplexNumbers.pdf
https://staff.fnwi.uva.nl/j.vandecraats/ComplexNumbers.pdf
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1?view=net-7.0%23code-try-4%20
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1?view=net-7.0%23code-try-4%20
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1?view=net-7.0%23code-try-4%20

