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Abstract – Thai jasmine rice holds immense 
economic significance both domestically and as a 
major export, making it a vital contributor to the 
Thai economy. Traditional and modern 
agricultural practices, centered around rice 
cultivation, play a pivotal role in the culture and 
economy of the Northeast region. However, 
concerns have arisen regarding rice 
production efficiency in recent times due to capital and 
labor availability challenges. Motivated by these 
concerns, this study employs a copula-based stochastic 
frontier modeling (copula-SFM) framework to 
investigate production efficiency empirically. The 
research is based on a sample of 397 farmers in the 
Northeast of Thailand. The Akaike Information 
Criterion (AIC) is utilized to select the most 
appropriate model. The results indicate that the 
Gaussian copula-SFM outperforms other copula 
models. Notably, the study identifies total area, capital, 
and labor as critical factors significantly contributing 
to the positive impact on jasmine rice production.  
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Furthermore, the research ranks provinces based on 
average technical efficiency (TE) scores, revealing 
Khon Kaen Province, Yasothon Province, and Roi Et 
Province as the top-performing regions. 
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1. Introduction

42TThailand's main crop, rice, has important 
historical and contemporary significance. It supports 
the nation's economy by acting as a crucial export 
product. The cultivation of rice takes up roughly 
46.1% of Thai cropland, providing food for 4.9 
million households, or 60.5% of all agricultural 
workers. As worthy of attention producer and 
exporter of rice, Thailand occupies a prominent place 
in the international market.  

42TThailand produces 3.7% of the world's uncooked 
rice, ranking sixth among the top-producing nations, 
according to the world rankings for 2020–2021 data. 
China, India, Indonesia, Bangladesh, and Vietnam, 
with respective contributions of 29.3%, 24.1%, 7.0%, 
6.8%, and 5.4%, significantly outpace Thailand's 
manufacturing volume. Thailand ranks third globally 
in exports only, accounting for 11.9% of the global 
market. India leads with a 38.9% market share, 
followed by Vietnam (12.9%). 

42TOne of the most scrumptious rice varieties in the 
world, Thai jasmine rice is recognized for its 
excellent flavor and scent. As a result of its 
outstanding tenderness and alluring scent when 
served, this delectable species is greatly favored by 
many Thai households. The northeastern part of 
Thailand, called "Isan," is a fertile zone for quality 
rice cultivation. Nonetheless, the entire region 
confronts significant challenges and limitations, 
including unfavorable topography, scarcity of labor, 
and erratic climate fluctuations.  
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These factors contribute to low agricultural yields, 
elevated production expenses, and unpredictable 
farmer income. Addressing these obstacles requires a 
well-considered policy approach that emphasizes 
practical development and the effective application 
of farmer expertise. This includes enhancing 
production techniques, devising strategic marketing 
plans, and harnessing appropriate technologies to 
mitigate escalating production costs. 

The sustainable development of rice farming 
squarely relies on production resources and efficient 
techniques, as is the case for all other production 
enterprises. Regarding research about technical 
efficiency in rice production, efficiency improvement 
is usually an area that is taken into account in 
crafting socio-economic policies and reforms that 
seek to achieve this [1]. Regarding rice production in 
Thailand, many economists have questioned 
technical efficiency considerations by farmers due to 
their probably inadequate knowledge of modern 
production decision choices that guarantee optimal 
outputs and, by extension, optimal profits.  

In the last few decades, stochastic frontier models 
(SFM) have become a successful method in 
analyzing agricultural production efficiency. In 
general, SFM is a parametric method used to 
investigate technical efficiency and productivity. It 
can be applied to estimate production functions such 
as Cobb-Douglas, Leontief, etc. 

It is commonly acknowledged that the SFM is an 
effective tool for evaluating the technical 
effectiveness of production units. It was first 
introduced as a cross-sectional methodology by [2] 
and [3], who made separate contributions to the field. 
The structure of the SFM shares similarities with a 
linear regression model, but it incorporates two 
distinct error components. The first component 
accounts for the stochastic fluctuation of the 
production frontier across different enterprises, 
leading to a two-sided error. The second component 
measures inefficiency relative to the frontier, 
resulting in a one-sided error. 

In recent decades, the conventional SFM has been 
widely employed in numerous studies focusing on 
production, cost, or profit efficiency. Some notable 
examples are the works of [1], [4], [5], [6], [7], [8], 
[9], [10]. Assuming independence between the one-
sided and two-sided error terms, maximum 
likelihood estimation and corrected OLS methods 
can be employed for SFM parameters. 

The assumption made about independence in 
terms of estimating technical efficiency still remains 
a contestable one. By adopting a copula-based 
framework joint the marginal distribution of the two 
random error components, the apparent inadequacies 
that characterize the independence assumption can be 
completely resolved.  

One of the first researchers to attempt this was 
Smith [11], who suggested an SFM incorporating 
dependence between the error components through 
copula functions. One key and powerful advantage of 
using copula models is their ability to adequately 
quantify rank correlation and tail dependence 
between two error terms. This introduces significant 
flexibility in using stochastic frontier analysis and 
makes the analysis more realistic. It is essential to 
highlight that log-likelihood functions in the copula-
based SFM generally do not have a closed form, 
rendering analytical computations simply impossible. 
It is this development that makes numerical 
computational options a must, an exercise that can be 
highly complicated and computationally costly. 

Our proposal uses a copula-based SFM to 
improve the analysis. In 2015, Wiboonponse et al. 
[12] showed that the conventional SFM severely 
overestimates the technical efficiencies and uses the 
maximum simulated likelihood estimation to 
evaluate the parameters in copula-based SFM. We 
systematically study different copula functions to 
investigate the nonindependence structure of the two 
error components in the copula-based SFM 
framework thoroughly. These copulas are used for 
cross-sectional data related explicitly to Thai jasmine 
rice production in northeastern Thailand. We use the 
lowest value of the Akaike Information Criterion 
(AIC) to select the suitable copula-based SFM. A 
significant difference is observed when comparing 
the calculated technical efficiency assuming 
independence or non-independence. The traditional 
approach, which assumes independence, greatly 
overestimates efficiency. This finding has critical 
implications for manufacturing analysis with SFM. 

The paper has the following sections: Section 2 
introduces the methods used, while Section 3 focuses 
on the evaluation procedures. Finally, Sections 4 and 
5 present the results, discussions, and conclusions of 
our study. 
 
2. Methodology 

 
The section provides a brief overview of the 
methodology employed in this study. Our approach 
combines the Stochastic Frontier Model (SFM) with 
copula analysis, which is used to integrate the two 
error components within the SFM framework.  
 
2.1.  Stochastic Frontier Model (SFM) 
 

To consider the traditional production function, 
let Y represent the maximum production output 
achievable with the given available technology and 
input material. The conventional production function 
states that 
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𝑌 = 𝑓(𝒙,𝜷), 

 where 𝑥 and 𝛽 are, respectively, vectors of inputs 
(independent variables) and associated parameters. 

 Casting it in a stochastic frontier model format, 
we have: 

𝑌 = 𝑓(𝒙,𝜷) ⋅ 𝑇𝐸, 

And taking log of the above, we have 

log (𝑌) = log (f(𝐱,𝛃)) + log (TE) 

 𝑇𝐸 denotes technical efficiency, log (𝑓(𝒙,𝜷)) is a 
linear function, and log (𝑌) is the feasible output in 
the log scale. For 𝑥𝑖 inputs, our regression equation 
can be written as  

log(𝑌𝑖) = β0 + �𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ log (TE) 

Aigner et al. (1977) defined log (TE) as a random 
error with two components of an independent 
random variable in the form 

log(𝑇𝐸) = 𝜀 = 𝑉 − 𝑈. 

Incorporating the above into the previous equation, 
we have  

log(𝑌) = β0 + �𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ 𝜀 = β0 +�𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ 𝑉 − 𝑈. 

The assumption about random variable V 
(efficiency error) is that it is symmetric with 
𝐸(𝑉) = 0 and 𝑣𝑎𝑟(𝑉) = 𝜎𝑣2, and the random 
variable U (inefficiency error) is a non-negative 
random variable with (𝐸(𝑈) > 0, 𝑣𝑎𝑟(𝑈) = 𝜎𝑢2.   

The term 𝑉, the efficiency error, is assumed to be 
symmetric with 𝐸(𝑉) = 0 and 𝑣𝑎𝑟(𝑉) = 𝜎𝑣2. The 
random variable U (inefficiency error) is a non-
negative random variable with  𝐸(𝑈) > 0, 𝑣𝑎𝑟(𝑈) =
𝜎𝑢.
2    

Thus, the calculation of technical efficiency (TE) can 
be derived using the following formula: 

𝑇𝐸 = 𝑒−𝑈 

In line with the existing literature, we assume 
𝑉 ∼ 𝑁(0,𝜎𝑉2) and 𝑈 is the Half-normal distribution. 
If the two errors are independent, we can estimate the 
parameter by the package's frontier using R 

programming [13] or the maximum entropy approach 
[14]. 

2.2.  Copula 
 

Copulas are commonly utilized to build the joint 
distribution function of many marginal distributions. 
According to Sklar’s theorem [15], any given 
cumulative distribution function (cdf) 𝐹(𝑥1,𝑥2) of 
any two-dimensional random vector (𝑋1,  𝑋2) can be 
formulated as: 

𝐻(𝑥1,𝑥2) = 𝐶�𝐹1(𝑥1),𝐹2(𝑥2)�, 

where 𝐹1(⋅) and 𝐹2(⋅) are the marginals of 𝑋1 and 
𝑋2, and 𝐶 is a copula function with the following 
regularity conditions. 

1. 0 ≤  𝐶�𝐹1(⋅) ≤ 1,  𝐹2(⋅)� ≤ 1 
2. 𝐶(𝐹1(⋅), 0)  and 𝐶�0,𝐹2(⋅)� = 0 
3.  𝐶(𝐹1(⋅), 1) = 𝐹1(⋅) and 𝐶�1,𝐹2(⋅)� = 𝐹2(⋅) 
4. If 𝑎 < 𝑏 and 𝑐 < 𝑑, then 

𝐶�𝐹1(𝑏),𝐹2(𝑑)� − 𝐶�𝐹1(𝑎),𝐹2(𝑑)� 
−𝐶�𝐹1(𝑏),𝐹2(𝑐)� + 𝐶�𝐹1(𝑎),𝐹2(𝑐)� 

We assign 𝑊1 = 𝐹1(𝑥1) and 𝑊2 = 𝐹2(𝑥2),  0 ≤
𝑊1,𝑊2 ≤ 1.  

The function of the copula density expresses the joint 
density as 𝑓(𝑥1,𝑥2) follows. 

 𝑓(𝑥1,𝑥2)   = ∂2𝐶(W1,𝑊2)
∂F1(x1)∂F2(𝑥2)     

                    = 𝑓1(𝑥1) ⋅ 𝑓2(𝑥2) ⋅ 𝑐(𝑊1,𝑊2). 

Where 𝑓1(𝑥1) and 𝑓2(𝑥2) are the marginal densities 
function,𝑐(𝑊1,𝑊2) is the copula density function. 
Next, we present a set of copula families below. 
 
1. Gaussian Copula: 

𝐶(𝑊1,𝑊2;𝜌 ): = Φ2(Φ−1(𝑊1),Φ−1(𝑊2);𝜌) 

          ϕ(𝑥1,𝑥2;𝜌) ≔
1

2𝜋�1 − 𝜌2
× 

                           e
−𝑥1

2−2𝜌𝑥1𝑥2+𝑥22
2(1−𝜌2) ,

Φ(𝑥1,𝑥2;𝜌): = �  
𝑥1

−∞
 �  

𝑥2

−∞
 φ(𝑥1,𝑥2;𝜌)𝑑𝑥2𝑑𝑥1

 

given the bivariate standard normal distribution, 
along with its density and distribution function and a 
correlation parameter 𝜌 ∈ (−1,1).  
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2. Clayton Copula: 

�𝑚𝑎𝑥�𝑊1
−𝜃 + 𝑊2

−𝜃 − 1, 0��
−1/𝜃

,𝜃 ∈ [−1,∞) ∖ {0} 

3. Frank copula: 

𝐶(𝑊1,𝑊2) = 

𝐶(−
1
𝜃

log �1 +
�𝑒−𝜃𝑊1 − 1��𝑒−𝜃𝑊2 − 1�

𝑒−𝜃 − 1
�, 

𝜃 ∈ 𝑅\{0} 

4. Gumbel copula: 

𝐶(𝑊1,𝑊2) = e−�(−log (𝑊1))𝜃+(−log (𝑊2))𝜃�
1
𝜃 ,𝜃 ∈ [1,∞) 

5. Joe Copula: 

𝐶(𝑊1,𝑊2) = 1 − �(1−𝑊1)𝜃 + (1 −𝑊2)𝜃 − (1 −

𝑊1)𝜃(1−𝑊2)𝜃�
1
𝜃,𝜃 ∈ [1,∞). 

2.3.  Copula-Based Stochastic Frontier Model (copula-
based SFM) 
 

The noise (error) terms 𝑉 and 𝑈 are considered to 
be independent under the first-generation SFM 
framework. However, Smith (2008) relaxed this 
assumption and, in turn, modeled 𝑉 and 𝑈 as being 
dependent using copula. Following Smith (2008), the 
density function 𝑓𝜃(𝜀) can be obtained from 𝑓(𝑢, 𝑣) 
as 

 𝑓(𝑢, 𝑣) = 𝑓(𝑢,𝑢 + 𝜀) 

= 𝑐𝜃�𝐹𝑈(𝑢),𝐹𝑉(𝑢 + 𝜀)� ⋅ 𝑓𝑈(𝑢) ⋅ 𝑓𝑉(𝑢 + 𝜀), 

Marginalizing out 𝑈 

𝑓𝜃(𝜀) = �  
∞

0
𝑓(𝑢,𝑢 + 𝜀)𝑑𝑢 

= � 𝑐𝜃�𝐹𝑈(𝑢),𝐹𝑉(𝑢 + 𝜀)� ⋅ 𝑓𝑈(𝑢) ⋅ 𝑓𝑉(𝑢 + 𝜀)d𝑢
∞

0
 

or, equivalently, 

𝑓𝜃(𝜀) = 𝐸𝑢��𝑐𝜃�𝐹𝑈(𝑈),𝐹𝑉(𝑈 + 𝜀)� ⋅ 𝑓𝑉(𝑈 + 𝜀)� 

where 𝐸𝑢[⋅] is the expectation function from the 
density function of  𝑈 and 𝜃 is a parameter space of 
copula and all marginal density functions.  

 

The log-likelihood function is predicated on the 
assumption that data on the cross-sectional 
observations of individual farmers are independent 
and identically distributed. 

𝐿(𝛽,𝜎𝑢,𝜎𝑣,𝜃) = � 
𝑛

𝑖=1

log 𝑓𝜃(𝜀𝑖) 

= � 
𝑛

𝑖=1

log 𝑓𝜃(𝑦𝑖 − 𝑥𝑖′𝛽). 

Where 𝑦𝑖 is the production unit from farmer 𝑖, 𝑥𝑖 
is the independent input factor from farmer 𝑖, 𝜎𝑢 is 
the scale parameter of the marginal distribution of 𝑈, 
and 𝜎𝑣 is the scale parameter of the marginal 
distribution of  𝑉. 

 
The marginal function of 𝜀 can be shown as 

𝑓(𝜀) = �  
∞

0
 𝑐𝜃(𝐹𝑈(𝑢),𝐹𝑉(𝑢 + 𝜀)) ⋅ 𝑓𝑈(𝑢) ⋅ 𝑓𝑉(𝑢

+ 𝜀)𝑑𝑢 

= �  
∞

0
 
2e

− 𝑢2
2𝜎𝑢2

�2𝜋𝜎𝑢
𝑐𝜃(𝐹𝑈(𝑢),𝐹𝑉(𝑢 + 𝜀)) ⋅ 𝑓𝑉(𝑢 + 𝜀)𝑑𝑢,

= �  
∞

0
 
2e

− 𝑢2
2𝜎𝑢2

�2𝜋𝜎𝑢
𝑐𝜃�𝐹𝑈(𝜎𝑢𝑢0),𝐹𝑉(𝜎𝑢𝑢0 + 𝜀)�

⋅ 𝑓𝑉(𝜎𝑢𝑢0 + 𝜀)𝑑𝜎𝑢𝑢0, 

= �  
∞

0
 
2𝑒−

𝑢2
2

√2𝜋
𝑐𝜃�𝐹𝑈(𝜎𝑢𝑢0),𝐹𝑉(𝜎𝑢𝑢0 + 𝜀)�

⋅ 𝑓𝑉(𝜎𝑢𝑢0 + 𝜀)𝑑𝑢0, 

 

under the assumption that 𝑈 is half-normally 
distributed, and by the Mote Carlo simulation, we 
can approximate the integral function by 

𝑓(𝜀) =
1
𝑁
�  
𝑁

𝑟=1

𝑓𝑣�𝜎𝑢𝑢0,𝑟 + 𝜀� × 

𝑐𝜃 �𝐹𝑈�𝜎𝑢𝑢0,𝑟�,𝐹𝑉�𝜎𝑢𝑢0,𝑟 + 𝜀��, 

where 𝑢0,𝑟, 𝑟 = 1,2, … ,𝑁, is a simulation number 
from the standard half-normal distribution (we can 
use function rhalfnorm from the package fdtool).  
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We can write the simulated maximum log-
likelihood in the SFM as: 

𝐿(𝛽,𝜎𝑢,𝜎𝑣,𝜃) = 

� 
𝑛

𝑖=1

log �
1
𝑁
𝑓𝑣�𝜎𝑢𝑢0,𝑟 + 𝜀𝑖� ×

𝑐𝜃 �𝐹𝑈�𝜎𝑢𝑢0,𝑟�,𝐹𝑉�𝜎𝑢𝑢0,𝑟 + 𝜀𝑖��
� 

With parameterization, the pair (𝜎𝑉,𝜎𝑈) is 
equivalent to (𝜆,𝜎) where 𝜆 = 𝜎𝑈/𝜎𝑉 and = 

�𝜎𝑈2 + 𝜎𝑉2.  It can be easily verified from the above 

that the inefficiency component of the model 
increases with 𝜆. The amount  𝜆 = 𝜎𝑈2/(𝜎𝑈2 + 𝜎𝑉2) 
gives the global inefficiency value. To determine 
whether inefficiency plays a significant role in the 
composite error term, 𝜆 and 𝛾 are used. For more 
information on this method, see [16]. 

Assessing the values of technical efficiency terms 
is the primary purpose of stochastic frontier 
modeling. Technical efficiency conditional 
expectations are expressed as:  

𝑇𝐸0 = 𝐸[e−w ∣ 𝜀]

=
1

𝑓𝜃(𝜀)
�  
+∞

0
 e−u𝑓(𝑢, 𝜀)𝑑𝑢

=
𝐸𝑈[𝑒−𝑈𝑓𝑉(𝑈 + 𝜀)𝑐𝜃(𝐹𝑈(𝑈),𝐹𝑉(𝑈 + 𝜀))]
𝐸𝑈[𝑓𝑉(𝑈 + 𝜀)𝑐𝜃(𝐹𝑈(𝑈),𝐹𝑉(𝑈 + 𝜀))]

 

3. Data  
 

Data for this study have been sourced from the 
Smart Farmer Project of The International College of 
Digital Innovation (ICDI), Chang Mai University 
database on jasmine rice production. The database 
has data covering a sample of 397 on the following 
variables: total capital, number of labor, and costs of 
production in the following provinces: Chaiyaphum, 
Khon Kaen, Maha Sarakham, Roi-Et, Surin, and 
Yasothon. Table 1 presents the descriptive statistics 
of the study data additionally showing that the 
highest standard deviation is observed for total 
capital, while the lowest is observed for total area. 
With the exception of total capital, all other series are 
not normal distributions, as we fail to accept the null 
hypothesis. Every variable is stationary by the unit 
root test. Moreover, all data is transformed into a 
natural log. The estimation of the copula-based SFM 
is as follows: 

log (Total Revenue)
= 𝛽0 + 𝛽1log (Total Area )
+ 𝛽2log (Total Capital)
+ 𝛽3log (Total Labor) + 𝑣𝑖 + 𝑢𝑖 

where log(Total Revenue) is the rice revenue, 
log(Total Area) is the amount of total area, log (Total 
Capital) is the amount of total capital, and log(Total 
Labor) is the number of total labor for each province 
𝑖. We assumed error terms 𝑣𝑖 follow normal 
distribution and inefficiency 𝑢𝑖 follows half-normal 
distribution. Additionally, the five different copula 
families, Gaussian, Clayton, Frank, Gumbel, and Joe 
are the candidates for the copula-based SFM. 

 
Table 1. Descriptive statistics 

Variable log 
(Total 

Revenue) 

log 
(Total 
Area) 

log 
(Total 

Capital) 

Log 
(Total 
Labor) 

Mean 10.3160 1.8430 8.7246 8.9679 

Median 10.1608 1.6094 8.7796 8.6995 

Maximum 12.5101 3.9512 11.5129 11.1844 

Minimum 
6.9217 

-
1.3863 4.8283 5.7038 

Std. Dev 0.6937 0.6598 1.0133 0.7016 

Skewness 0.2470 0.2058 0.1966 0.3508 

Kurtosis 1.7480 1.9859 0.1004 1.6525 

Jarque-
Bera 

56.006**
* 

70.754
*** 

2.8418 55.48*** 

Unit root 
test  

-
7.5764**

* 

-
7.3875

*** 

-
7.8259**

* 

-
7.5499**

* 

Note: ***, **, and * are significant at 0.01, 0.05, and 0.1, 
respectively. 

4. Empirical Results 
 

The results of this study are presented in the 
following section. We begin by reporting the 
comparison of copula-based SFM models, and 
subsequently, we interpret the best-fit model to 
provide a comprehensive analysis of our findings. 

 
4.1.  The Copula-Based SFM Estimated Results 

We evaluated five copula families to estimate our 
SFM and chose the suitable model with the lowest 
AIC value. Table 2 presents the results. It can be seen 
that the Gaussian copula produces the lowest AIC 
with a value of -668.0253, and, as a result, for this 
study, the Gaussian copula SFM is the most suitable 
model.   
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Table 2. The AIC value from the copula model 

Copula families AIC 
Gaussian -668.0253 
Clayton -645.2552 
Frank -609.3914 

Gumbel -659.5961 
Joe -630.3294 

Table 3 shows the estimates of the Gaussian 
copula parameters of the SFM. Every parameter of 
independent input variables has a positive value. It 
has a significant impact on Thai jasmine rice 
production, with parameter estimates of 0.9306, 
0.0067, and 0.0657 for total area, total capital, and 
total labor, respectively. Since all variables have 
been log-transformed, an increase of 1% in area or 
land size will increase Thai jasmine rice production 
by 0.9306% with a statistical significance of 1% 
level.  

For total capital, an increase of 1% will increase 
rice production by 0.0067%, significant at the 10% 
level. In the case of the total, a 1% increase will 
increase Thai jasmine rice production by 0.0657% at 
a significant level of 1%. uσ , it can be considered 
statistically significant at a level of 1%, which clearly 
indicates that Thai jasmine rice production is plagued 
with inefficiency. Our results have confirmed a 
pronounced positive dependence in the noise-
inefficiency measure, ρ with a value of 0.7379. This 
finding proves that a copula-based SFM should be 
preferred to the traditional SFM. 

Table 3. The estimated parameters of Thai jasmine rice 
production on copula-based SFM 

Variable 
Gaussian copula-based 

SFM   P-Value 
Estimates S.E. 

Intercept 8.1549*** 0.0006 0.0000 
log(Total 
Area) 0.9306*** 0.0028 0.0000 

log(Total 
Capital) 0.0067* 0.0035 0.0597 
log(Total 
Labor) 0.0657*** 0.0031 0.0000 

vσ 0.0196*** 0.0031 0.0000 

uσ 0.2495*** 0.0041 0.0000 
ρ  0.7379*** 0.1149 0.0000 

Note: ***, **, and * are significant at 0.01, 0.05, and 0.1, 
respectively. 

4.2. Technical Efficiency (TE) Estimates 

Table 4 below presents the TE estimates, which 
indicate the ratio of observed Thai jasmine 
production to the maximum feasible output. The TE 
score has a specific interpretation that is relevant to 
measuring jasmine rice production efficiency. If the 
TE value is less than 1, it means that Thai jasmine 
rice production is not achieving its full potential 
efficiency. On the other hand, if the TE value is equal 
to 1, it implies that production has reached its full 
possibility boundary. The results indicate that Khon 
Kaen Province holds the top average TE score of 
0.8548, while Roi Ed Province scored the lowest 
average TE with 0.7660. 

Trace plots and box plots of Gaussian copula-
based technical efficiency for jasmine rice production 
in Northeast Thailand provinces are shown in Figures 
1 and 2. 

Table 4. Average TE of Northeast in Thailand 

Variable Average TE 
Chaiyabhum 0.8278 
Khon Kaen 0.8548 
Maha Sarakham  0.8220 
Roi Ed 0.7660 
Surin 0.8152 
Yasothon 0.8348 

Figure 1. The TE value of Northeast of Thailand 

Figure 2. A box plot of the average TE of Northeast 
Provinces 
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5. Conclusion

This paper employed a copula-based SFM to 
analyze Thai jasmine rice production in Northeast 
Thailand. Model selection was done using the lowest 
AIC approach, and our study shows that Gaussian 
copula SFM is the best model. Total area, total 
capital, and total labor have been found to have a 
positive impact and significant effects on Thai 
jasmine rice production in the selected provinces, 
with the following parameter estimates: 0.9306, 
0.0067, and 0.0657, respectively. Regarding average 
TE scores, Khon Kaen has the highest TE of 0.8548, 
followed by Yasothon with 0.8348, while Roi Ed has 
the lowest TE score of 0.7660.  

The results of this study will serve as practical 
guidelines for developing Thai jasmine rice 
production. The TE result for the province with the 
maximum score will serve as a benchmark or a 
reference point for other provinces that intend to 
replicate the underlining factors in the well-
performing province. The findings about the low-
performing provinces also offer a valuable and 
critical policy opportunity. In Thailand, the 
government has made efforts to boost Thai jasmine 
rice production by expanding cultivated areas. 
However, low productivity remains a significant 
concern in Thailand's primary rice production. The 
government has actively encouraged farmers to adopt 
new technologies, resulting in a consistent increase in 
rice production. An analysis using the copula-based 
SFM models has unveiled that area, capital, and labor 
have significant and positive impact on the average 
major rice output in Thai farming. Therefore, we 
hope that important rice production policies will take 
these current findings into account when formulating 
their policy initiatives to enhance efficient rice 
production in these regions. In future research, the 
copula-SFM model could be applied to study Thai 
jasmine rice production in other regions not covered 
in the current study, including Southern, Northern, 
and Central Thailand. 

Acknowledgements 
This research is supported by CMU Junior Fellowship 

Program. 

References: 

[1]. Kumbhakar, S. C., Wang, H.-J., & Horncastle, A. 
(2015). A Practitioner's Guide to Stochastic Frontier 
Analysis Using Stata. Cambridge University Press. 
Doi:10.1017/cbo9781139342070 

[2]. Aigner, D., Lovell, C. K., & Schmidt, P. (1977). 
Formulation and estimation of stochastic frontier 
production function models. Journal of 
econometrics, 6(1), 21-37.  
Doi: 10.1016/0304-4076(77)90052-5 

[3]. Meeusen, W., & van Den Broeck, J. (1977). 
Efficiency estimation from Cobb-Douglas 
production functions with composed 
error. International economic review, 435-444.  
Doi: 10.2307/2525757 

[4]. Jondrow, J., Lovell, C. K., Materov, I. S., & 
Schmidt, P. (1982). On the estimation of technical 
inefficiency in the stochastic frontier production 
function model. Journal of econometrics, 19(2-3), 
233-238. Doi: 10.1016/0304-4076(82)90004-5 

[5]. Coelli, T., Rahman, S., & Thirtle, C. (2002). 
Technical, allocative, cost and scale efficiencies in 
Bangladesh rice cultivation: a non‐parametric 
approach. Journal of agricultural economics, 53(3), 
607-626. Doi: 10.1111/j.1477-9552.2002.tb00040.x 

[6]. Coelli, T. J., Rao, D. S. P., O'Donnell, C. J., & 
Battese, G. E. (2005). An introduction to efficiency 
and productivity analysis. springer science & 
business media. 

[7]. Sriboonchitta, S., & Wiboonpongse, A. (2005). On 
the Estimation of Stochastic Production Frontiers 
with Self-Selectivity: Jasmine and Non-Jasmine Rice 
in Thailand †.  CMU Journal, 4(1). 

[8]. Rahman, S., & Hasan, M. K. (2008). Impact of 
environmental production conditions on productivity 
and efficiency: A case study of wheat farmers in 
Bangladesh. Journal of environmental 
management, 88(4), 1495-1504.  
Doi:10.1016/j.jenvman.2007.07.019 

[9]. Rahman, S., Wiboonpongse, A., Sriboonchitta, S., & 
Chaovanapoonphol, Y. (2009). Production efficiency 
of Jasmine rice producers in Northern and North‐
Eastern Thailand. Journal of Agricultural 
Economics, 60(2), 419-435.  
Doi:10.1111/j.1477-9552.2008.00198.x 

[10]. Rahman, S., Wiboonpongse, A., Sriboonchitta, S., & 
Kanmanee, K. (2012). Total factor productivity 
growth and convergence in Northern Thai 
agriculture. African Journal of Agricultural 
Research, 7(17), 2689-2700.  
Doi: 10.5897/ajar11.2134 

[11]. Smith, M. D. (2008). Stochastic frontier models with 
dependent error components. The Econometrics 
Journal, 11(1), 172-192.  
Doi: 10.1111/j.1368-423x.2007.00228.x 

[12]. Wiboonpongse, A., Liu, J., Sriboonchitta, S., & 
Denoeux, T. (2015). Modeling dependence between 
error components of the stochastic frontier model 
using copula: Application to intercrop coffee 
production in Northern Thailand. International 
Journal of Approximate Reasoning, 65, 34-44. 

[13]. Coelli, T., Henningsen, A., & Henningsen, M. A. 
(2013). Package ‘frontier’. In Stochastic Frontier 
Analysis. 

[14]. Autchariyapanitkul, K., Srisirisakulchai, J., Kunasri, 
K., & Ayusuk, A. (2017). Technical efficiency in 
rice production at farm level in northern Thailand: A 
stochastic frontier with maximum entropy 
approach. Thai Journal of Mathematics, 15, 121-132. 

[15]. Nelsen, R. B. (2006). An introduction to copulas. 
Springer. 

[16]. Kao, C., Lee, L. F., & Pitt, M. M. (2001). Simulated 
maximum likelihood estimation of the linear 
expenditure system with binding non-negativity 
constraints. Annals of Economics and Finance, 2(1), 
203-223. 


