
TEM Journal. Volume 12, Issue 4, pages 2235-2240, ISSN 2217-8309, DOI: 10.18421/TEM124-34, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 2235

Performance of Lambda Expressions in
High Level Programming Languages

Todor Todorov P

1,2
P, Nikolay Noev P

2
P

P

1
PSt. Cyril and St. Methodius University of Veliko Tarnovo, 3G. Kozarev Str.,

5000 Veliko Turnovo, Bulgaria
P

2
P Institute of Mathematics and Informatics - Bulgarian Academy of Sciences, 8,

G. Bonchev Str., 1113 Sofia, Bulgaria

Abstract – Functional programming is a
programming paradigm that is becoming increasingly
popular among software developers. This is due in part
to the rise of distributed systems and the need for more
robust and scalable code. In the paper is presented an
overview of the syntax and capabilities of Lambda
expressions in three programming languages – C#,
Java and Python. Performance of programming
language constructions is an important research task.
Some popular topics for investigation are comparison
of programming languages efficiency in fields like
bioinformatics or classification of Lambda expression
usage and their productiveness. In the current study
the performance of Lambda expressions is tested with
three specific test cases and the results are compared to
alternative technologies that could be used to solve
similar problems. The results shows that speed
performance of C# is the best from the compared
languages and that List Comprehensions is the optimal
method for collection filtering in Python.

Keywords – lambda expressions, programming
languages, comparison of performance.

DOI: 10.18421/TEM124-34
35TUhttps://doi.org/10.18421/TEM124-34 U35T

Corresponding author: Todor Todorov,
St. Cyril and St. Methodius University of Veliko Tarnovo,
3G. Kozarev Str., 5000 Veliko Turnovo, Bulgaria
Email: 35TUt.todorov@ts.uni-vt.bgU35T

Received: 20 June 2023.
Revised: 25 September 2023.
Accepted: 11 October 2023.
Published: 27 November 2023.

© 2023 Todor Todorov & Nikolay Noev;
published by UIKTEN. This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivs
4.0 License.

The article is published with Open Access at
Uhttps://www.temjournal.com/

1. Introduction

Functional programming is a key part of
contemporary programming languages.It is based on
mathematical functions, conditional expressions and
recursion. One of the important features of functional
programming is the use of lambda expressions,
which gives a concise and flexible alternative to
functions [1].

Lambda expressions are a relatively recent
addition to the common programming languages and
have the ability to simplify and streamline the way in
which functions are written and used. They are
anonymous functions that are used as other functions
arguments or variable values. Since their introduction
they have been widely adopted by developers due to
the increased flexibility and concise syntax they
provide.

Comparison of performance of programming
concepts in different programming languages is an
important research topic [2], [3], [4], [5].

In the paper are explored the concept of lambda
expressions and are discussed their uses, benefits,
and limitations. Also, is examined the use of lambda
expressions in three popular programming languages:
Java, C# and Python.

2. The Concept of Lambda Expressions

In the section is made an overview of the basic
syntax and programming constructions related to
Lambda expressions in JAVA, C# and Python.
Examples from the three languages are presented and
remarks of similarities and differences are
summarized.

2.1. Java

Java 8 introduced support for lambda
expressions, which allow developers to write
functions as concise, anonymous functions that can
be passed as arguments to other functions or stored in
variables [6], [7], [8], [9].

mailto:t.todorov@ts.uni-vt.bg
https://www.temjournal.com/
https://doi.org/10.18421/TEM124-34

TEM Journal. Volume 12, Issue 4, pages 2235-2240, ISSN 2217-8309, DOI: 10.18421/TEM124-34, November 2023.

2236 TEM Journal – Volume 12 / Number 4 / 2023.

Lambda expressions in Java are written using the
syntax:

where the arguments are a comma-separated list

of parameters, and the expression is the body of the
function.

Lambda expressions can be used in a variety of
contexts in Java, including as arguments to functional
interfaces, as the implementation of anonymous inner
classes, and as the implementation of functional
methods. For example, as parameters to functions
like the forEach method, which can be used to
process elements of a stream in a functional manner
[10]:

A list of integers is presented and the forEach

method outputs each element. A lambda expression
is used as a parameter of the forEach method.

Functional Interfaces
Functional interfaces are interfaces that declare

exactly one abstract method. In Java, functional
interfaces can be used as a source for lambda
expression. Next is presented a functional interface to
sort a list of strings in ascending order:

Anonymous Inner Classes
Lambda expressions can also be used as a concise
alternative to a class that is defined and instantiated
in one line of code, without a name. Let’s consider
the following anonymous inner class:

The code can be rewritten with a lambda

expression, as shown in the following listing:

2.2. C#

C# 3.0 introduced support for lambda

expressions, which are similar in syntax and
functionality to those in Java [11], [12].

Lambda expressions in C# are written using the
syntax:

Lambda expressions can be used in a variety of

contexts in C#, including as arguments to delegates,
as the implementation of anonymous methods, and as
the implementation of LINQ query expressions:

Delegates
Delegates are a type-safe, object-oriented

mechanism for calling methods, and are widely used
in C# as event handlers and callbacks. Lambda
expressions can be used as arguments to delegates to
provide a flexible way to define and use functions.

In the next passage is shown a delegate type
Func that takes two integer arguments and returns an
integer. A lambda expression is used as a delegate
variable value:

Anonymous Methods
Lambda expressions can also be used as a good

alternative to anonymous methods. An anonymous
method is a method that is defined and instantiated in
one line of code, without a name. Let’s create a
thread using an anonymous method:

This code can be rewritten using a lambda

expression:

LINQ (Language Integrated Query)
LINQ query expressions are a core part of LINQ,

and they allow developers to write queries using the
syntax of the C# language.

In the next excerpt is shown a query to a list of
integers to find all even numbers:

TEM Journal. Volume 12, Issue 4, pages 2235-2240, ISSN 2217-8309, DOI: 10.18421/TEM124-34, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 2237

2.3. Python

Python is a dynamically typed, interpreted
programming language that has been widely used
since its initial release in 1991. Python has had
support for lambda expressions since its earliest
versions, which are written using the syntax lambda
arguments: expression [13], [14], [15], [16].

The syntax is:

The arguments are the inputs to the lambda
function and the expression is the result of the
function. The expression can be any valid Python
expression that returns a value, and it can refer to the
arguments in the same way as in a regular function
definition.

Lambda expressions in Python are often used as
anonymous functions that are passed as arguments to
other functions. In the following listings a lambda
expression is used as the key function when sorting a
list of tuples:

One of the main use cases for lambda

expressions in Python is as a compact way to specify
a function for a higher-order function. One such
function is the map function in Python. It transforms
a collection to another collection by applying a
function to all elements:

The map function is applied to the list of

numbers, and the lambda expression lambda x: x**2
is used to specify the function that is applied to each
number. The result is a list of the squares of the
numbers.

Another use case for lambda expressions in
Python is as a convenient way to create small, throw-
away functions for one-off operations. The next
source code sorts a list of strings by the length of the
strings:

The sorted function is used to sort the list of

strings, and the expression lambda s: len(s) is used to
specify the key function that is used to determine the
sort order. The result is a list of strings sorted by the
length of the strings.

3. Comparison of Performance

In the section are presented main research results

of the paper. In 3.1 are summarized Lambda
functions support capabilities of different
programming languages. In 3.2 is described the test
environment used for experiments. This includes
both hardware and software prerequisites. In 3.3 are
presented all the test results about the performance of
Lambda expressions in C#, JAVA and Python and
filtering capabilities of Python.

3.1. Lambda Functions Support

In Table 1 are summarized results of comparison

about the support of lambda functions in Java, C#,
and Python:

• Syntax: The syntax for defining a lambda
expression in each language;

• Higher-Order Functions: Whether the
language supports higher-order functions;

• Closure: Whether the lambda functions in
each language can capture variables from the
surrounding scope;

• Type Inference: Whether the language
supports type inference, which automatically
determines the types of variables based on the
context in which they are used.

Table 1. Lambda functions support

LANGUAGE SYNTAX HIGHER-ORDER
FUNCTIONS CLOSURE TYPE INFERENCE

JAVA
(arguments) -> expression

or
(arguments) -> { statements; }

Yes Yes Yes

C#
(arguments) => expression

or
(arguments) => { statements; }

Yes Yes Yes

PYTHON
lambda arguments: expression Yes Yes No

TEM Journal. Volume 12, Issue 4, pages 2235-2240, ISSN 2217-8309, DOI: 10.18421/TEM124-34, November 2023.

2238 TEM Journal – Volume 12 / Number 4 / 2023.

As can be seen from the table, all three languages
support lambda functions and higher-order functions,
and all three languages support closures. However,
only Java and C# support type inference.

3.2. Test Environment

The tests performed aimed to calculate the

execution time for some predefined functionalities
with and without the usage of lambda functions on
the three considered programming languages. The
test environment consists of Intel Core CPU i7-
11700, 8 GB DDR4 and operating system Windows
11 Pro. The following versions of programming
languages are used: C# 11.0 with .NET 7.0, Java SE
19, Python 3.11.2.

All the tests are applied on a List of objects from
class Employee that contains three fields id(int),
name(String), salary(double). All the functionalities
are similar to C#, Java and Python and will be
demonstrated using the C# syntax. Only some
specific methods will be presented for Java and
Python

The class Employee also implements
IComparable interface and implements CompareTo
method so that objects from the class could be sorted
according to the value of the salary field. Structure
of the class Employee is presented in Figure 1.

Figure 1. Class Employee

CompareTo method returns a negative, positive

integer or zero depending on if the first value is less
than the second value or vice versa.

Before presenting the tests essentials following
observation should be made:

• All the tests are performed on a List of
200000 objects with random generated values for the
field salary. Pseudorandom external generator is
used together with additional specialty implemented
algorithm for value interval adjustments.

• For execution time measuring are used
methods of Stopwatch class in C# and its analogues
in Java and Python.

• All the tests are performed one hundred
times each and is taken average time of all
executions for more precise conclusions.

3.3. Test Results

First test includes sort of the list of Employee

objects according to salary filed using Lambda
expressions. The following Lambda expressions are
used:

Second test applies default sorting functionality

with built-in Comparer and using the CompareTo
method or its alternatives. The code is:

For built-in sorting in Python are investigated

two alternatives. The one presented on the next
listing is using overrides of comparison methods of
the Employee class:

The other tested alternative is with a sorting

function passed as a parameter to the sorted method:

TEM Journal. Volume 12, Issue 4, pages 2235-2240, ISSN 2217-8309, DOI: 10.18421/TEM124-34, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 2239

Third test performs research on the filtering
capabilities of Lambda functions. It measures the
time for filtering the list and extract only those
objects that have value for salary field greater than
50000. These are approximately half of the elements
in the list:

Finally, is performed a test of filtering but

extended with the time-consuming operation of
transformation the filtered result to list and retrieving
the number of filtered elements:

Table 2. Test results

The results of all test are presented in Table 2.
From the results following conclusions could be
made:
• Lambda expressions usage for sorting is fastest

in C# and slowest in Python;
• Lambda expressions have the same or even lower

performance for sorting then the case when
comparer is used;

• Usage of comparator operators overriding is
convenient but very ineffective operation in
Python;

• Filtering operation as a separate operation is very
effective in all compared languages;

• Additional operations on filtered data like
transform it back to list are the slowest part of
the filtering process. They are significantly slow
in Python;
An extended research on the filtering options in

Python language has been performed. The three
additional techniques used for filtering are:

• Filter with FOR loop:

• Filter with List Comprehensions:

• Filter with External Function:

Also, filtering with inline lambda expression

presented in the previous tests is considered together
with these three techniques. Results are presented in
Table 3.

Table 3. Filtering test results

Test Python

Filter with FOR loop 27.51 ms

Filter with List Comprehensions 17.81 ms

Filter with External Function 19,43 ms

Filter with Filter function 31,14 ms

The results show that the optimal way for

collection filtering is to use List Comprehensions.
Almost similar behaviour could be accomplished
using the filter function with external comparison
methods. FOR loops and inline lambda functions
present extremely low filtering performance.

4. Conclusion

In the paper is made an overview of lambda

expression usage in some common programming
languages and are presented results from tests about
their performance.

Test C# Java Python

Sort with
lambda 43.32 ms 54.36 ms 68.04 ms

Sort with
comparer 41.52 ms 52.84 ms

External
function 67.23 ms

Operator
overriding 420.58 ms

Filter
without
count

0.01 ms 0.01 ms 0.01 ms

Filter with
count 1,42 ms 1,98 ms 31,14 ms

TEM Journal. Volume 12, Issue 4, pages 2235-2240, ISSN 2217-8309, DOI: 10.18421/TEM124-34, November 2023.

2240 TEM Journal – Volume 12 / Number 4 / 2023.

All the test are performed over lists with 200000
objects. Sorting and filtering capabilities are tested
using techniques with and without the usage of
Lambda expressions.

It could be concluded that in most cases
performance of lambda expressions are comparable to
other programming constructions for the same tasks.
However, lambda expressions have other advantages
in addition to the reliable performance:

• Reduced syntax;
• Sequential and Parallel execution support;
• Higher Efficiency with parallel execution;
• Internal iteration of collections.

From the considered programming languages (C#
Java and Python) C# has the best performance.

Another important result is from the speed
comparison of different filtering techniques in
Python. Tests show that for Python collection filtering
is optimal to use List Comprehensions.

In future researches it will be important to extend
the investigation of Lambda expressions capabilities
in other programming languages. Also, it will be
interesting to develop additional sets of collections
and data structures that could be used as test data.

Acknowledgements

This research was funded by the National Science Fund
of Bulgaria (scientific project “Digital Accessibility for
People with Special Needs: Methodology, Conceptual
Models and Innovative EcoSystems”), Grant Number KP-
06-N42/4, 08.12.2020.

References:

[1]. Slonneger, K., Kurtz, B. (1995). Formal Syntax and

Semantics of Programming Languages: A Laboratory
Based Approach. Addison-Wesley Longman
Publishing Co., Inc., USA.

[2]. Fourment, M., Gillings, M.R. (2008). A comparison
of common programming languages used in
bioinformatics. BMC Bioinformatics, 9, 82.

[3]. Kalemba, E., Ade-Ibijola, A. (2019). A Metric for
Estimating the Difficulty of Programming Problems
by Ranking the Constructs in their Solutions. 2019
International Multidisciplinary Information
Technology and Engineering Conference (IMITEC),
Vanderbijlpark, South Africa, 1-9.

[4]. Cerveira, F., Fonseca, A., Barbosa, R., Madeira, H.
(2018). Evaluating the Inherent Sensitivity of
Programming Languages to Soft Errors. 14th
European Dependable Computing Conference
(EDCC), Iasi, Romania, 65-72.

[5]. Donchev, I., Todorova, E. (2022). Dynamic
Polymorphism without Inheritance: Implications for
Education. International Journal of Advanced
Computer Science and Applications, 13(10), 643 –
649.

[6]. Urma, R., Fusco, M., Mycroft, A. (2018). Modern
Java in Action: Lambdas, streams, functional and
reactive programming. Manning.

[7]. Nachenga, N. (2020). Java Lambdas : Introduction to
Java 8 Functional Programming. Independently
published.

[8]. Mazinanian, D., Ketkar, A., Tsantalis, N., & Dig, D.
(2017). Understanding the use of lambda expressions
in Java. Proceedings of the ACM on Programming
Languages, 1(OOPSLA), 1-31.

[9]. Java lambda expressions. (n.d.) Oracle. Retrieved
from:https://docs.oracle.com/javase/tutorial/java/java
OO/lambdaexpressions.html
[accessed: 17 May 2023].

[10]. Langer, A. (n.d.). Lambda Expressions and Streams
in Java. Angelikalanger. Retrieved
from: http://www.angelikalanger.com/Lambdas/Lam
bdas.html [accessed: 20 May 2023].

[11]. Uzayr, S. (2022). Mastering C#: A Beginner's Guide.
CRC Press.

[12]. Troelsen, A., & Japikse, P. (2021). Pro C# 9 with.
NET 5: Foundational Principles and Practices in
Programming. Apress.

[13]. Sangle, S., & Muvva, S. (2019). On the use of
lambda expressions in 760 open source Python
projects. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, 1232-1234.

[14]. Sharma, V.K., Kumar, V., Sharma, S., Pathak, S.
(2021). Python Programming: A Practical Approach.
Chapman and Hall/CRC.

[15]. Rao, A. E., & Chimalakonda, S. (2020). An
exploratory study towards understanding lambda
expressions in Python. In Proceedings of the 24th
International Conference on Evaluation and
Assessment in Software Engineering, 318-323.

[16]. Krishna, A. (2023). Mastering Lambdas: A Guide to
Anonymous Functions in Python. Ashutoshkrris.
Retrieved from:
https://blog.ashutoshkrris.in/mastering-lambdas-a-
guide-to-anonymous-functions-in-python
[accessed: 12 June 2023].

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://www.angelikalanger.com/Lambdas/Lambdas.html
http://www.angelikalanger.com/Lambdas/Lambdas.html
https://blog.ashutoshkrris.in/mastering-lambdas-a-guide-to-anonymous-functions-in-python
https://blog.ashutoshkrris.in/mastering-lambdas-a-guide-to-anonymous-functions-in-python

