
TEM Journal. Volume 12, Issue 4, pages 2038-2049, ISSN 2217-8309, DOI: 10.18421/TEM124-14, November 2023.

2038 TEM Journal – Volume 12 / Number 4 / 2023.

SSDesigning a Graphical Domain-Specific
Modeling Language for Efficient Block

Cipher Configuration: BCLang

Samar Amil Qassir P

1
P, Methaq Talib GaataP

 1
P, Ahmed T. Sadiq P

2
P, Faiz Al Alawy P

3

1 Department of Computer Science, College of Science, Mustansiriyah University, Baghdad, Iraq

P

2
PComputer Science Department University of Technology-Iraq, Baghdad, Iraq

P

3
PCollege of Engineering, Kent State University, Ohio, U.S.A.

Abstract – Block cipher (BC) is a type of symmetric
cipher used to encrypt data. Despite its advantages, it
faces a substantial challenge. Writing the script code
for the BC scheme accurately using General-Purpose
Programming Languages (GPPLs) poses a significant
challenge for programmers. The aim of this paper is to
present the first graphical domain-specific modeling
language (DSML) for designing and implementing BC
algorithms, called BCLang. It is an extension to our
previous DSML that was developed for Stream cipher.
Programming efficiency and expressiveness were
increased by reducing grammar and runtime errors
and providing a high level of abstraction. BCLang
provides the fundamental components of the BC three
structures, which enable the programmer to design
and implement BC algorithms in a graphical manner.
Two keystream generation methods, performance
analysis, and tests of the National Institute of
Standards and Technology (NIST) for randomness
analysis were provided. The presented language was
evaluated based on five subjective metrics specific to
graphical DSML evaluation. The design, evaluation
details, and properties are explained in depth in this
paper.

DOI: 10.18421/TEM124-14
34TUhttps://doi.org/10.18421/TEM124-14 U34T

Corresponding author: Samar A. Qassir,
Department of Computer Science, College of Science,
Mustansiriyah University, Baghdad, Iraq
Email: 34TUsamarqassir@uomustansiriyah.edu.iq U34T

Received: 01 June 2023.
Revised: 02 September 2023.
Accepted: 09 September 2023.
Published: 27 November 2023.

© 2023 Samar Amil Qassir, Methaq Talib
Gaata, Ahmed T. Sadiq & Faiz Al Alawy; published by
UIKTEN. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivs 4.0
License.

The article is published with Open Access at
Uhttps://www.temjournal.com/

Keywords – Cryptography, block cipher, domain
specific language, domain-specific modeling language,
meta-model.

1. Introduction

Cryptography involves using codes and ciphers to
safeguard data and information from unauthorized
access [1]. The encryption process transforms plain
text into a form that only the intended recipient can
understand. It is a crucial aspect of information
security [2]. Block ciphers (BC) are the cornerstone
of security applications. They encrypt blocks of
plaintext bits (typically 64 or 128 bits) using a
symmetric key method to create an equally sized
block of cipher text bits [3].

The first type, substitution permutation networks
(SPN), is a product cipher that uses a substitution
layer for confusion and a permutation layer for
diffusion at each round. To simulate non-linearity in
confusion, the substitution function applies several
substitution boxes (S-boxes such as S1,2, 3, ..., n)
across the data. The permutation function can be
produced using a fixed bit permutation or a matrix
operation. In the permutation layer, the operation is
applied throughout the entire block to disperse the
relationship between different pieces of data. The
round of an SPN is completed by applying the round
keys (K[i]) to the block data [4]. Iterated block
ciphers belong to the second category of classic
feistel networks (CFN). The plain text is divided into
two halves, (L[i]) and (R[i]), and the round
transformation function (F) is applied to one half of
the data. The other half is then processed with the
result using an operation like XOR (⊕), and the two
halves are then swapped. After multiple identical
rounds, the cipher text is produced. The round keys
(K[i]), which the key scheduling procedure derives
from the seed key, are applied to the internal rounds.
The structure facilitates decoding by using reverse-
ordered round keys [5].

mailto:samarqassir@uomustansiriyah.edu.iq
https://www.temjournal.com/
https://doi.org/10.18421/TEM124-14

TEM Journal. Volume 12, Issue 4, pages 2038-2049, ISSN 2217-8309, DOI: 10.18421/TEM124-14, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 2039

The third type, addition rotation XOR (ARX), is
created using only three simple operations: modular
addition, bitwise rotation, and ⊕. Due to its small
size and simplicity, ARX has garnered significant
attention from both academia and industry. ARX
utilizes a combination of linear and non-linear
processes, such as ⊕, bit shift, bit rotation, and
modular addition [6], [7], [8].

To simplify the implementation of BC algorithms
and make them faster and more efficient, we employ
a domain-specific Modeling language (DSML)
approach [9], [10], [11]. DSML offers a higher level
of abstraction than general-purpose programming
languages (GPPLs) by providing a DSML-based
executable modeling editor, which is more flexible
and precise toward a specific domain, thus reducing
programming complexity. Rather than dealing with
coding details, programmers work with a model of
the program. DSML allows the development of
2D/3D object behavioral models in a particular
modeling environment [14].

DSMLs are used to create models and are defined
by two distinct parts. The first is the abstract syntax,
which consists of a meta-model that describes the
language concepts and their relationships. The
second is the concrete syntax, or DSML notation,
which is a set of graphical symbols used to draw
diagrams that facilitate the understanding and
visualization of the model [15], [16], [17]. This
research introduces BCLang, a new graphical DSML
that enhances the simplicity, flexibility, and
expressiveness of BC design and implementation.
BCLang automates the transformation of plain text to
corresponding cipher text and caters to both novice
and experienced programmers. The language
comprises the main building blocks of CFN, SPN,
and ARX, along with two keystream generation
methods. Additionally, it offers fifteen NIST suite
tests [18], [19] as graphical constituents and
evaluation components for statistical and
performance analysis of encrypted results.

The remaining sections of this paper are arranged
as follows: Section 2 discusses related work on
DSMLs, followed by the development of BCLang in
Section 3. In Section 4, BCLang implementation and
three case studies are presented. Section 5 reports the
evaluation results, while Section 6 concludes the
paper and offers suggestions for future research.

2. Related Work

A programmer who uses a GPPL is able to create

a program in any field for a wide range of application
domains. But each GPPL has its difficulties; some of
them are sensitive to space, small, or capital letters
[11]. A program's design is a genuine difficulty; even
a small program can require the naming of many
things like variables, procedures, functions, classes,
objects, etc.

Thus, if the programmer is a beginner, he needs to
first learn the syntax of that GPPL before trying to
write the code, debug all bugs, and implement the
program. In comparison to GPPLs, DSMLs provide
various benefits for expressing a particular domain.
One benefit is that it offers greater abstractions for
the target domain, increasing output and improving
the standard of the development process. The
presented BCLang language alleviates the
programming complexity of the GPPLs through the
use of simplified interfaces; it provides interactive
visualizations; and the user-friendly, common
interactive GUI with drag-and-drop capability allows
for fruitful and interactive use for creating and
implementing a wide range of BC domain schemas.
Our research on stream cipher and other projects
across various application domains consistently
demonstrate a common finding: that the development
of programming languages using the DSML
approach achieves more efficiency, simplicity,
expressiveness, and better validation and verification
for programs designed for specific application
domains.

 In our previous work [20], we defined a graphical
DSML "SCLang" that significantly increases the
flexibility, expressiveness, and ease for stream cipher
schema design and implementation. SCLang is
developed for both beginner and expert
programmers. It provides the main components in a
graphic manner to construct the stream cipher
schema: six different keystream generation methods
that can be used in a hybrid fashion (one or multi-
levels), four logic gates, and fifteen tests of the NIST
suite to facilitate statistical analysis of encrypted
results. The abstract syntax of SCLang consists of
five packages, along with its restrictions based on
domain concepts. For the concrete syntax,
meaningful icons for meta_elements were chosen in
addition to the static type used to define the
semantics. The proposed SCLang allows for reducing
the complexities and testing of a generated random
sequence by providing a higher abstraction level,
generating the random sequence automatically,
enhancing the performance of the cipher schema (in
both design and implementation), and increasing
efficiency by reducing the likelihood of mistakes.

Challenger et al. [21] developed a DSML for
MASs known as SEA ML, which defines the
language's syntax and semantics.

They illustrated how model-driven development
could be used to build actual MASs using the
language's graphical capabilities. The proposed
DSML includes new perspectives that make it easier
to develop software agents that operate in the
Semantic Web environment. They also presented a
recommended approach for building MASs based on
SEA ML and a demonstration of how it can be used
to create an agent-based stock market system.

TEM Journal. Volume 12, Issue 4, pages 2038-2049, ISSN 2217-8309, DOI: 10.18421/TEM124-14, November 2023.

2040 TEM Journal – Volume 12 / Number 4 / 2023.

Berendes et al. [22] proposed the High Street
Journey Modeling Language (HSJML), a DSML that
facilitates the analysis and planning of customer trips
in a digital high street retail setting. The proposed
language may be used to develop and implement
online-offline customer journeys in digital high
streets. Based on an empirical analysis of event logs
from retail platforms, the proposed language
provides the necessary elements for mapping,
analyzing, and forecasting online-offline customer
journeys in local high streets from a design
perspective. Zweihoff et al. [23] have introduced
Pyro, a framework that allows for DSML through the
internet. Pyro transforms a web browser into a
domain-specific graphical development environment
with features similar to integrated development
environments (IDEs), given an appropriate meta-
model definition. Pyro provides high-level,
simplicity-focused assistance for the required
metamodeling, while the Meta Style Language
(MSL) specifies the visual appearance of the
modeling artifacts described in the Meta Graph
Language (MGL). The MGL describes the possible
types of nodes, edges, and syntactical constraints.
The browser-based domain-specific development
environment is constructed entirely automatically
based on these requirements using architecture
analysis and design language (AADL).

Alaca et al. [24] have developed a comprehensive
evaluation framework and related tool, named
AgentDSM-Eval, to systematically assess domain-
specific modeling languages (DSMLs) for multi-
agent systems (MASs). This framework enables the
evaluation of various quantitative and qualitative
aspects of agent software development, including the
extent of domain coverage of MAS DSMLs,
adoption of modeling aspects by agent developers,
and the performance of MAS DSMLs in terms of
development time and throughput. Furthermore,
AgentDSM-Eval introduces new quality traits and
metrics that are specifically developed for the MAS
domain to evaluate the quality of MAS DSML
features [12], [13].

This framework and tool can be used to improve
the design and development of MAS DSMLs and
enhance the quality of agent-based software systems.

In their research, Vjetica et al. [25] developed a
system for formally defining and automatically
executing production processes using model-driven
(MD) principles and DSMLs.

The main management tools in this system are
models of the production process. The study
examined the production process modeling domain
and proposed a DSML that can be used to generate
models of the production process suitable for
automatic code generation. The resulting code can be
used to automate manufacturing operations in a shop
floor or simulation and also identify potential faults
that may occur during the process, as well as error
handling and corrective actions. The DSML was
evaluated by several user groups.

3. The BCLang

The abstract syntax of a graphical language
consists of classes and relations that represent the
concepts of the application domain and their
relationships. This abstract syntax is represented by
the meta-model, which defines the syntax and
structure of the graphical language. On the other
hand, the concrete syntax maps the domain concepts
to their representations in model elements, as
depicted in Figure 1. The concrete syntax can be
either visual or textual. The proposed graphical
language employs the visual type, which uses
meaningful icons to make the language more
intuitive and user-friendly in configuring BC models.
Effective graphical modeling languages should
provide specific visual representations that enable
programmers to have a clear and accurate
understanding of the models being expressed. The
proposed language's abstract syntax is explained
using a meta-model, which outlines how the model
should be structured and describes the abstract
syntax. This meta-model is made up of seven
packages, which are linked together by either an
inheritance or association relation, as illustrated in
Figure 2. Each of these seven packages is described
in detail as follows:

Figure 1. The architecture of proposed language

3.1. Package1

The first package of the proposed language
defines all aspects of the graphical environment
implementation. The graphical environment is built
upon three different libraries, as illustrated in Figure
2. All of the other packages and their classes inherit
their graphical details from Package1 through a
generalized relation, as shown in Figure 2.

3.2. Package2

The second package of BCLang contains eleven

classes, such as Plaintext, Ciphertext, and others, as
explained in Figure 2 and Table 1. These classes are
considered fundamental and are used in all models
for the BC types, including CFN, SPN, and ARX, in
the basic scenario of their encryption/decryption
processes.

TEM Journal. Volume 12, Issue 4, pages 2038-2049, ISSN 2217-8309, DOI: 10.18421/TEM124-14, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 2041

In BCLang, Plaintext is first encoded into a byte
array, and then each byte is converted into a bit array.
Encoding is carried out using the 8-bit Unicode
Transformation Format (UTF-8).

3.3. Package3

The third package in the BCLang meta-model

consists of four classes: ToState, SPNRounds,
SPNDecrypted, and SPNKeyGene. This package
utilizes the Performance class from Package7 and
classes such as Plaintext, Ciphertext, Geffe, LFSR,
ToBlock, and KeySize from Package2. The package
details are explained in Table 2.

3.4. Package4

The fourth package in the BCLang meta-model

consists of four classes: Into4Parts, ARXRounds,
ARXDecrypted, and ARXKeyGeneration. This
package utilizes the classes of Package7 and classes
such as Plaintext, Ciphertext, Geffe, LFSR, ToBlock,
and KeySize from Package2. The package details are
explained in Table 3.

3.5. Package5

The fifth package in the BCLang meta-model

consists of five classes: InitialPermutation,
Finalpermutation, CFNRounds, CFNDecrypted, and
CFN_KeyGen.

The TripleDESRounds and CFNDESRounds
classes are subclasses of the CFNRounds superclass,
while TripleDESDecrypted and DES_Decrypted
classes are subclasses of the CFNDecrypted
superclass. The CFNRounds class and
CFNDecrypted utilize the CFNKeyGen based on a
directed association relation The CFNDecrypted

class also uses the Finalpermutation classes based on
a directed association relation; this package utilizes
the Performance class from Package 7 and all classes
in Package2, as explained in Table 4.

3.6. Package6

The sixth package in the BCLang meta-model
consists of fifteen classes that represent NIST tests:
Frequency, Frequency within a Block, Runs,
Longest-Run-of-Ones in a Block, Binary Matrix
Rank, Discrete Fourier Transform, Non-Overlapping
Template Matching, Overlapping Template
Matching, Maurer's Universal Statistical, Linear
Complexity, Serial, The Approximate Entropy,
Cumulative Sums, Random Excursions, and Random
Excursions Variant. These tests are implemented as
reported in [19]. All the classes in this package are
utilized through a directed association relation by the
Ciphertext class in Package2. The package details are
explained in Table 5.

3.7. Package7

The last package in the BCLang meta-model
consists of two classes: Performance and Analyser,
as explained in Figure 2 and Table 6. The Analyser
class is utilized through directed association relation
by the Geffe and LFSR classes in Package2. On the
other hand, the Performance class is used through
directed association relation by the Rounds and
Decrypted classes in Packages 3, 4, and 5. The
Analyser class computes each of the autocorrelation,
periodicity, balance property, and run-length
property of the seed key generated. The Performance
class computes each of the encryption time,
decryption time, memory used, and the throughput of
the BC model.

Figure 2. The Meta-model of the proposed language

TEM Journal. Volume 12, Issue 4, pages 2038-2049, ISSN 2217-8309, DOI: 10.18421/TEM124-14, November 2023.

2042 TEM Journal – Volume 12 / Number 4 / 2023.

Table 1. Package2

Class Side link No.
of links

Accept Produce

Plaintext

Left

- - - bitList
bitLength
 Right Can be linked to ToBlock

class.
Many

Details It is the main class; the root of every BC model will be start by
this component. It accepts plain text by manually or through load
file of these types (*.doc, *.pdf, *.txt).

Ciphertext

Left

Can be linked to Rounds class
in packages 3, 4, and 5.

One bitList bitList
bitLength
 Right Can be linked to any class in

package6.
Many

Details It is the class used for every BC model as final component, it used
to display and save the result of BC schema, as one of these file
types (*.doc, *.pdf, *.txt).

ToBlock

Left

Can be linked to the plaintext
class in the package2.

One bitList blocks

Right Can be linked to the ToState
in the package3, Split class in
the package2, and Into4Parts
in the package4.

One

Details It is the second class that is used for the BC models; it is used by
all packages 3, 4, and 5.

Split

Left

Can be linked to ToBlock. One bitList Two
bitLists

Right Can be linked to LeftPart,
RightPart in package2, and
Rounds in package5.

Two

Details This classis used by package5.
Combined

Left

Can be linked to LeftPart,
RightPart in package2.

Two bitList Two
bitLists

Right Can be linked to Ciphertext. One
Details This classis used by packages5.

LeftPart,
RightPart

Left

Can be linked to split class. One bitList bitList

Right Can be linked to Rounds in
package5.

One

Details This classis used by package5.
KeySize

Left

- - - no_k

Right Can be linked to Geffe and
Lfsr classes in pakage2.

One

Details This classis used by packages 3, 4, 5, it used to determine the key
size of BC model.

Geffe, LFSR

Left

Can be linked to the keysize
for the BC model in the
package2.

One bitLen keyList
info

Right Connect to any class in the
package6 and keyGen in
packages 3, 4, and 5.

Many

Details Two classes of the keystream generation methods used for the BC
models to generate random sequences.

NumberRounds

Left - - - no_r

Right Can be linked to Rounds,
KeyGen, and Decrypted class
in package5.

Three

Details This classis used by package5, it used to determine the rounds
number of BC model.

TEM Journal. Volume 12, Issue 4, pages 2038-2049, ISSN 2217-8309, DOI: 10.18421/TEM124-14, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 2043

Table 2. Package3

Class Side link No. of
links

Accept Produce

ToState

Left

Can be linked to ToBlock class
in in package2.

One bitList stateList

Right Can be linked to Rounds Class
in package3.

One

Details It is the first class used for SPN BC model to transfer bitList into
matrix form.

Rounds

Left

Can be linked to ToState and
KeyGene Class.

Two stateList,
subkey_r

Ciphstate
List,
Per_Infor

Right Can be linked to Decrypted
class and Ciphertext class sin
package2 , Performance class in
package7.

Two

Details This class is used by SPN BC model. It is performing the
encryption process.

Decrypted

Left

Can be linked Rounds,
KeyGene classes in package3
and Performance class in
package7.

Three Ciphstate
List,
subkey_r

stateList,
Per_Infor

Right Can be linked to performance
class in package7.

Two

Details This classis used by SPN BC model. It is performing the decryption
process.

KeyGene

Left

Can be linked to Geffe/Lfsr
class in package2.

One bitList,
no_r

subkey_r

Right Can be linked to Rounds and
Decrypted Classes in package3.

Two

Details This classis used by SPN LWBC schema for generating the subkeys
required for encryption and decryption processes.

Table 3. Package4

Class Side link No.
 of
links

Accept Produce

Into4Parts

Left

Can be linked to the ToBlock
class in the package2.

One bitList 4 bitList

Right Can be linked to the ARXRounds
class in the package4.

One

Details It is the first class used for the ARX BC model to split a bitList into
four bitLists.

Rounds

Left

Can be linked to Left Part,
RightPart Classes in package2
and KeyGen class in package4.

Many Two
bitLists,
subkey_r

CiphbitL
ist,
Per_Infor

Right Can be linked to ARXDecrypted
class and Ciphertext class in
package2, Performance class.

Two

Details This class is used by ARX BC model. It is performing the encryption
process.

Decrypted

Left

Can be linked to Rounds and
KeyGene Classes in package4

Two CiphbitL
ist,
subkey_r
,

bitLists,
Per_Infor
 Right Can be linked to performance

Class in package7.
Two

Details This classis used by ARX BC model. It is performing the decryption
process.

KeyGene

Left

Can be linked to Geffe/Lfsr class
in package2.

One bitList,
no_r

subkey_r

Right Can be linked to Rounds and
Decrypted Classes in package4.

Two

Details This class is utilized by ARX BC model for generating the subkeys
required for encryption and decryption processes.

TEM Journal. Volume 12, Issue 4, pages 2038-2049, ISSN 2217-8309, DOI: 10.18421/TEM124-14, November 2023.

2044 TEM Journal – Volume 12 / Number 4 / 2023.

Table 4. Package5

Class Side link No.
of links

Accept Produce

InitialPermutation

Left

Can be linked to the ToBlock
class in the Package2
package.

One bitList bitList

Right Can be linked to the Split
class in the package2.

One

Details It is the first class used for CFN BC models. It is performing an
initial permutation on the input bitList.

FinalPermutation

Left

Can be linked to the
Combined class.

One bitList Byte
bitList

Right Can be linked to the
Decrypted class in package5,
Ciphertext class package2.

Two

Details It is the last class used for the CFN BC models. It is performing
final permutation on the bitList.

Rounds

Left

Can be linked to Left Part,
RightPart, NumberRounds,
classes in package2 and
KeyGen class in package5.

Many bitLists
(Left and
Right),
no_r,
subkey_r

bitLists
(Left and
Right),
Per_Infor

Right Can be linked to LeftPart and
RightPart classes in package2.

Two

Details This class is used by CFN BC model. It is performing the
encryption process.

Decrypted

Left

Can be linked to KeyGen,
Rounds classes in CFN and
NumberRounds class in
package2, Performance class
in package7.

Many bitList,
no_r,
subkey_r

bitList,
Per_Infor

Right Can be linked to performance
class in package7.

Two

Details This class is used by CFN BC model. It is performing decryption
process.

KeyGen

Left

Can be linked to Geffe/Lfsr
class in package2.

One bitList,
no_r

subkey_r

Right Can be linked to Rounds,
Decrypted in package5,
NumberRounds in package2.

Three

Details This class is used by CFN BC models for generating the subkeys
required for encryption/ decryption processes.

Table 5. Package6

Class Side link No.
of links

Accept Produce

For all Tests

Left

Can be linked to Ciphertext class,
Geffe/Lfsr class in the package2.

One bitList -

Right - -
Details Fifteen classes of the NIST tests were used for the BC models to

measure the randomness of the results.

TEM Journal. Volume 12, Issue 4, pages 2038-2049, ISSN 2217-8309, DOI: 10.18421/TEM124-14, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 2045

Table 6. Package7

Class Side link No.
of links

Accept Produce

Analyzer

Left

Can be linked to Geffe/Lfsr
class in the package2.

One bitLen
bitList

Display the
results
only. Right - -

Details This class of the package7 is used for the BC models to perform
statistical analysis.

Performance

Left

Can be linked to Rounds class
and Decrypted class in packages
3, 4, and 5.

One 2bitList Display
results
only.

Right - -
Details This class is used to perform performance analysis.

The definition of abstract syntax comprises both
the concepts in the BC domain and the relations
between those concepts. The BC concepts were
defined by Packages (1-7).

Table 7 outlines the domain relationships and
restrictions between these packages.

Table 7. The relations and restrictions of BCLang

Relation Type Description Example
1. Determine the classes number Control the number of each

constituent in BC model

Each BC model should have only one
"plaintext" constituent, according to that
an error message that appears whenever
the user tries to use more than one.

2. The classes relations Control the relation between
constituents, each link between
two constituent has a name

A notice stating "Link is missing" will be
presented if a link between two
constituents in the BC model is neglected
to be linked.

3. Determine for number of
classes relationship

One-to-one, many-to-one, and
one-to-many connections in the
meta-model are used to control
the amount of relationships
between the constituents

One ciphertext constituent is used for
each BC model, although the same
plaintext constituent can be used in
several configurations of the BC model.

4. Determine the start point and
end point

Control the relationship's
direction to specify the beginning
and ending of that BC model

Before creating the relation with the
plaintext constituent, it is impossible to
construct the link between the "ToBlock"
and "Into4Parts" constituents. When
something went wrong, BCLang
responded by refreshing the workspace
and going back one step.

5. The inheritance relation Control the BCLang-defined
inheritance connections.
Naturally, a subclass in a model
contains all of its superclass's
characteristics and connections

Examples of this situation include "CFN
DESRound" and "CFN
TripleDESRound."

6. The association direction
relation

Control the association direction
relation defined in BCLang.
Naturally, a class in meta-model
used another class by one
direction use

The “ToBlock” constituent use
“plaintext” constituent by one direction.
For wrong trying, the BCLang response
by refreshing the workspace to one step
back

4. Case Studies

The implementation details of BCLang and its

examples are discussed in this section. BCLang is
developed as an internal graphical Domain-Specific
Modeling Language (DSML), based on Python as the

host language and PyCharm as the Integrated
Development Environment (IDE). The GUI
templates for the graphical user interfaces and
graphical elements were implemented using PyQt5,
Matplotlib, and Orange Canvas libraries.

TEM Journal. Volume 12, Issue 4, pages 2038-2049, ISSN 2217-8309, DOI: 10.18421/TEM124-14, November 2023.

2046 TEM Journal – Volume 12 / Number 4 / 2023.

The BCLang meta-model was created using the
Software Ideas Modeler tool. To demonstrate the
capabilities of BCLang, we selected well-known BC
algorithms such as DES, 3DES, AES, and IDEA as
case studies.

Figure 3 illustrates model for encryption and
decryption of AES, with two randomness analysis
tests of cipher results and performance evaluation.
Figure 4 shows model of DES, and Figure 5 presents
the IDEA model.

Figure 3. Encryption and decryption model of AES

Figure 4. Encryption and decryption model of DES

Figure 5. Encryption and decryption model of IDEA

TEM Journal. Volume 12, Issue 4, pages 2038-2049, ISSN 2217-8309, DOI: 10.18421/TEM124-14, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 2047

5. Evaluation

In order to evaluate the quality and performance
of the proposed BCLang language, a qualitative
analysis was conducted based on five subjective
criteria using the (goal and question) metric
paradigm [26]. The five criteria used were: visual
element, functionality, clarity, foundation support,
and scalability, which are defined in Table 8 along
with a list of more precise metrics for assessing each
of these five requirements. The visual element
criterion is concerned with the ability of the language
to visually represent the concepts and their
relationships. The metrics used for this criterion
include graphics use, illustration type used, explicit
usage thoroughness, using space efficiently, and
effectiveness of using color. Functionality is another
criterion that evaluates the capability of the language
to support the necessary features required for
modeling BC algorithms. Metrics for this criterion
include support for different BC algorithms, support
for different modes of operation, and support for
randomness analysis tests. Clarity criterion is
concerned with the ease of understanding the
modeling elements and relationships for different
levels of users.

The metrics used for this criterion include the
comprehensibility of the modeling elements and
relationships, user satisfaction, and the suitability for
novices. Paradigm or (Foundation support) is another
criterion that evaluates the ability of the language to
support different modeling paradigms. Metrics for
this criterion include the support for different
abstraction levels, support for different modeling
styles, and the ability to describe complex systems.
Scalability criterion is concerned with the ability of
the language to handle large and complex systems.
Metrics for this criterion include the ability to handle
large models, the ability to handle complex
relationships, and the efficiency of the language.
Overall, the analysis of these criteria indicates that
BCLang is a promising graphical DSML for BC
algorithms. The language supports various BC
algorithms, and it provides a clear and consistent
graphical representation of the concepts and their
relationships. It is easy to comprehend and use for
different levels of users, and it supports different
modeling paradigms. Furthermore, it is efficient and
scalable, making it suitable for handling large and
complex systems. The metric table below, as in [26],
was presented, and we shadowed in lighted blue to
show what is achieved by BCLang as follows:

Table 8. Definitions and assessment for BCLang

Criteria highest score lowest score
Visual element How much data is graphically represented, such as through icons, diagrams,

and graphs.
Graphics use fully graphical mainly visual little graphic with text fully textual

illustration type used symbolic icons fewer icons Quite little zero icons
Explicit usage
Thoroughness

Applicable Generally applicable Generally applicable
to half

zero icons

using space efficiently Use effectively useful in a variety of
ways

a minimally effective not enough

effectiveness of using color Use effectively Putting color to good
use

a minimally effective No use of color

Functionality The language's broad applicability as opposed to its focus on a specific field of
application.

functioning flawlessly general intent some functions less for several areas specified purpose
Integrity of application for all domains for many domains for few domains for one domain

Clarity The ease with which programming in this language may be understood.
Programmers' ease of use much simpler Equitable Equitable a lot less

simplicity for programmers
who are not technical

much simpler Equitable Equitable a lot less

seasoned user much simpler Equitable Equitable a lot less
Foundation support The degree to which the suggested language is compatible with the

programming model that it was intended for.
in favour of a paradigm Robust Equitable Weak very limited

assistance with a domain All domains Equitable a lot less One domain
Scalability A metric for this language's capacity to write complex programs.
assistance with modularity Robust Equitable Weak none
assistance with abstraction Robust Equitable Weak none
assistance with information

concealing
Robust Equitable Weak none

assistance with
encapsulation

Robust Equitable Weak none

TEM Journal. Volume 12, Issue 4, pages 2038-2049, ISSN 2217-8309, DOI: 10.18421/TEM124-14, November 2023.

2048 TEM Journal – Volume 12 / Number 4 / 2023.

6. Conclusion

The proposed graphical DSML (Domain-Specific
Modeling Language) called BCLang offers several
benefits for the development of BC (Block Cipher)
algorithms. BCLang provides high-level abstraction
and a flexible and efficient way of performing tasks
in the BC domain. It offers a highly expressive
graphical user interface with drag-and-drop
capabilities, making it user-friendly and easy to use
for both beginner and expert users. BCLang also
includes the essential constituents of three basic inner
structures of BC algorithms, namely CFN (Feistel
network), SPN (Substitution-permutation network),
and ARX (Add-Rotate-XOR) structures, in a
graphical manner. This helps to hide the
implementation details of these structures and make
the modeling process more straightforward.
Moreover, BCLang includes fifteen tests of NIST
and performance evaluation, enabling users to
compare different results for the same plain text. The
ability to change and reconfigure the BC model
during runtime is another key feature of BCLang.
Overall, BCLang provides an efficient and flexible
approach to modeling and analyzing BC algorithms,
making it a valuable tool for researchers and
practitioners in the field. For future research,
BCLang can be extended to include constituents of
other cipher types and randomness analysis tests.

References:

[1]. Abdullah, S. M., & Abduljaleel, I. Q. (2021). Speech

Encryption Technique using S-box based on Multi
Chaotic Maps. TEM Journal, 10(3), 1429.

[2]. Ullah, S., Zheng, J., Din, N., Hussain, M. T., Ullah,
F., & Yousaf, M. (2023). Elliptic Curve
Cryptography; Applications, challenges, recent
advances, and future trends: A comprehensive
survey. Computer Science Review, 47, 100530.

[3]. Halunen, K., & Latvala, O. M. (2021). Review of the
use of human senses and capabilities in
cryptography. Computer Science Review, 39, 100340.

[4]. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru,
D., & Schofnegger, M. (2020). On a generalization of
substitution-permutation networks: The HADES
design strategy. In Annual International Conference
on the Theory and Applications of Cryptographic
Techniques, 674-704. Springer, Cham.

[5]. Shen, X., Cheng, L., Sun, B., & He, J. (2021).
Revisiting Impossible Differential Distinguishers of
Two Generalized Feistel Structures. Security and
Communication Networks, 2021.

[6]. Huang, M., & Wang, L. (2019). Automatic Search for
the Linear (hull) Characteristics of ARX Ciphers:
Applied to SPECK, SPARX, Chaskey and CHAM-64
(Full Version). Cryptology ePrint Archive.

[7]. Qassir, S. A., Gaata, M. T., & Sadiq, A. T. (2022).
Modern and Lightweight Component-based
Symmetric Cipher Algorithms. ARO-THE
SCIENTIFIC JOURNAL OF KOYA
UNIVERSITY, 10(2), 152-168.

[8]. Daimi, K., Francia, G., Ertaul, L., Encinas, L. H., &
El-sheikh, E. (Eds.). (2018). Computer and network
security essentials. Springer.

[9]. Chodarev, S., Sulír, M., Porubän, J., & Kopčáková,
M. (2022). Experimental Comparison of Editor Types
for Domain-Specific Languages. Applied
Sciences, 12(19), 9893.

[10]. Myslín, J., & Kaiser, J. (2022). State Modeling
Methodology for Business Processes. TEM
Journal, 11(4), 1824-1834.

[11]. Shen, L., Chen, X., Liu, R., Wang, H., & Ji, G.
(2021). Domain-specific language techniques for
visual computing: a comprehensive study. Archives of
Computational Methods in Engineering, 28(4), 3113-
3134.

[12]. Bousse, E., Mayerhofer, T., Combemale, B., &
Baudry, B. (2019). Advanced and efficient execution
trace management for executable domain-specific
modeling languages. Software & Systems
Modeling, 18(1), 385-421.

[13]. Hutchins, N. M., Biswas, G., Zhang, N., Snyder, C.,
Lédeczi, Á., & Maróti, M. (2020). Domain-specific
modeling languages in computer-based learning
environments: A systematic approach to support
science learning through computational
modeling. International Journal of Artificial
Intelligence in Education, 30, 537-580.

[14]. Kosar, T., Oliveira, N., Mernik, M., Pereira, V. J.
M., Črepinšek, M., Da, C. D., & Henriques, R. P.
(2010). Comparing general-purpose and domain-
specific languages: An empirical study. Computer
Science and Information Systems, 7(2), 247-264.

[15]. Deshayes, R. (2013). A domain-specific modeling
approach for gestural interaction. In 2013 IEEE
Symposium on Visual Languages and Human Centric
Computing ,181-182. IEEE.

[16]. Shim, H., & Fishwick, P. A. (2004, August). A
customizable approach to visual programming using
dynamic multimodeling. In enabling technologies for
simulation science VIII, 5423, 447-456. SPIE.

[17]. Boubeta-Puig, J., Ortiz, G., & Medina-Bulo, I.
(2015). ModeL4CEP: Graphical domain-specific
modeling languages for CEP domains and event
patterns. Expert Systems with Applications, 42(21),
8095-8110.

[18]. Balajee, M. K., & Gnanasekar, J. M. (2016).
Evaluation of key dependent S-box based data
security algorithm using Hamming distance and
balanced output. Tem Journal, 5(1), 67.

[19]. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker,
E., Leigh, S., ... & Vo, S. (2001). A statistical test
suite for random and pseudorandom number
generators for cryptographic applications, 22. US
Department of Commerce, Technology
Administration, National Institute of Standards and
Technology.

TEM Journal. Volume 12, Issue 4, pages 2038-2049, ISSN 2217-8309, DOI: 10.18421/TEM124-14, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 2049

[20]. Qassir, S. A., Gaata, M. T., & Sadiq, A. T. (2023).
SCLang: Graphical Domain-Specific Modeling
Language for Stream Cipher. Cybernetics and
Information Technologies, 23(2), 54-71.

[21]. Challenger, M., Demirkol, S., Getir, S., Mernik, M.,
Kardas, G., & Kosar, T. (2014). On the use of a
domain-specific modeling language in the
development of multiagent systems. Engineering
Applications of Artificial Intelligence, 28, 111-141.

[22]. Berendes, C. I., Bartelheimer, C., Betzing, J. H., &
Beverungen, D. (2018). Data-driven customer journey
mapping in local high streets: a domain-specific
modeling language. A DSML for Customer Journeys
in High Streets.

[23]. Zweihoff, P., Naujokat, S., & Steffen, B. (2019).
Pyro: generating domain-specific collaborative online
modeling environments. In International Conference
on Fundamental Approaches to Software
Engineering, 101-115. Springer, Cham.

[24]. Alaca, O. F., Tezel, B. T., Challenger, M., Goulão,
M., Amaral, V., & Kardas, G. (2021). AgentDSM-
Eval: A framework for the evaluation of domain-
specific modeling languages for multi-agent
systems. Computer Standards & Interfaces, 76,
103513.

[25]. Vještica, M., Dimitrieski, V., Pisarić, M., Kordić, S.,
Ristić, S., & Luković, I. (2021). Multi-level
production process modeling language. Journal of
Computer Languages, 66, 101053.

[26]. Kiper, J. D., Howard, E., & Ames, C. (1997).
Criteria for evaluation of visual programming
languages. Journal of Visual Languages &
Computing, 8(2), 175-19.

	Figure 1. The architecture of proposed language
	5. Evaluation

