
TEM Journal. Volume 12, Issue 4, pages 1985-1994, ISSN 2217-8309, DOI: 10.18421/TEM124-09, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 1985

Domain Driven Design Approaches in
Cloud Native Service Architecture

Jordan Jordanov P

1
P, Pavel Petrov P

1

P

1
PUniversity of Economics - Varna, Varna, Bulgaria

Abstract – With the proliferation of cloud native
services, the need for efficient software design
strategies has become of the utmost importance. The
hypothesis of this article is that domain driven design
approaches, when integrated into cloud native service
architecture, provide a valuable methodology for
building modular, scalable, and maintainable systems.
The goal of the article is to analyse how these
approaches can improve software design while also
contributing to system availability, reliability, and
resilience. The methodology employed in this study
involves the analysis of domain-driven design
approaches and their integration with cloud native
technologies. The paper emphasizes the importance of
clean domain models, well-defined bounded contexts,
and the separation of concerns in enterprise-grade
software. While focusing on foundational concepts, the
paper suggests the potential for a future case study to
illustrate the domain driven software development
process in action. While the paper does not provide
specific empirical results, it highlights the potential
benefits of adopting domain-driven design and cloud
native architectures. That is why the article examines
the fundamental components of domain driven design,
their integration with cloud native technologies,
benefits, and challenges.

DOI: 10.18421/TEM124-09
36TUhttps://doi.org/10.18421/TEM124-09 U36T

Corresponding author: Pavel Petrov,
University of Economics - Varna, Varna, Bulgaria
Email: 36TUpetrov@ue-varna.bgU36T

Received: 03 July 2023.
Revised: 05 September 2023.
Accepted: 11 September 2023.
Published: 27 November 2023.

© 2023 Jordan Jordanov & Pavel Petrov;
published by UIKTEN. This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivs
4.0 License.

The article is published with Open Access at
Uhttps://www.temjournal.com/

In addition, the study sets the stage for further
research in this area to help software architects and
developers.

Keywords – Domain driven design, cloud native
services, distributed systems, software architecture.

1. Introduction

Cloud services have revolutionized the production
and deployment of software systems. These services
take advantage of the agility, adaptability, and fault
tolerance that cloud platforms offer [16]. Even so,
there are unique challenges associated with leading
organizations to developing and operating
applications in a dynamic environment.

The domain driven design (DDD) is a software
development methodology that prioritizes the
business domain as the driving force behind
architecture design [27]. From a business
perspective, a domain is defined as a “field or
industry in which a business operates, composed of
multiple subdomains”. There are three categories of
subdomains: generic, core, and supporting [17]. It is
well known that businesses invest in software to meet
specific requirements or address specific problems.
For an in-depth understanding of the problem,
architects must first grasp the domain. Core DDD
principles include capturing valuable domain
knowledge in code models, which can include both
structural and behavioural aspects, in a collaborative
mode between domain experts and software
engineers [15]. DDD provides conditions and
activities for constructing a domain model as the
primary artifact [2]. In this context it is important to
examine the potential of DDD as a guiding principle
for designing cloud native services to optimize
development processes.

A list of essential concepts for designing robust,
scalable, and secure cloud-based systems is presented
in Table 1. Each principle may be used as a solution
to a commonly occurring problem.

mailto:petrov@ue-varna.bg
https://www.temjournal.com/
https://doi.org/10.18421/TEM124-09

TEM Journal. Volume 12, Issue 4, pages 1985-1994, ISSN 2217-8309, DOI: 10.18421/TEM124-09, November 2023.

1986 TEM Journal – Volume 12 / Number 4 / 2023.

Table 1. List of key design principles

Name Description

Separation of
Concerns

A design guideline for dividing distinct
sections of a computer program. Each
module and object must have its own
purpose and context. This leads to
more opportunities for module
development, reuse, and autonomy.

Encapsulation

A way to restrict direct access to
certain segments of an element so that
people cannot view the state values of
all of an object's variables.
Encapsulation can be used to cover up
both the data members and the data
functions or methods.

Single
Responsibility

The basic concept asserting that a
“module should only be accountable to
a single actor.” [20]. To put it another
way, each piece in the design must
have a single purpose. Single
responsibility is closely related to the
concepts of coupling and cohesion.

Dependency
Inversion

Research by R. C. Martin [19], [20]
shows that this principle is a specific
way to loosely connect software
modules. It specifies that high-level
modules should not rely on low-level
modules. Each must rely on
abstractions. In other words, the
principle suggests that classes or
modules should rely on abstractions
(interfaces or abstract classes) instead
of actual implementations.

“You Are Not
Going to Need
It” (YAGNI)

A fundamental principle of extreme
programming [32]. YAGNI says, “Do
not add functionality unless it is
considered required.” In other words,
create the code required for the given
circumstance. One must not add
anything that is unneeded. When
adding logic to the code, one should
not take into account what may be
required in the future.

“Keep It Short
and Simple”
(KISS)

This idea relates to the simplification
of functionality implementation. Less
complicated code is easier to read and
hence easier to maintain.

Factory

This is one of the well-known Gang of
Four design patterns. It offers an
interface for constructing objects
without specifying their classes. It
encapsulates the logic of object
construction within a distinct factory
class.

All the patterns, techniques, and principles are

geared toward the design and development of simple,
intuitive, flexible, testable, and maintainable cloud
software architectures. The architectures have a high
level of abstraction and a long-term focus for
solution components.

Their design is comprehensive, and
implementation focused. Clean architecture [20] is a
philosophy of architectural essentialism and operates
mainly according to a cost-benefit analysis. The
clean architecture centers around ensuring that the
system accurately mirrors the users' use cases and
mental models. It builds only what is necessary when
it is necessary and optimizes it for maintainability.
The topic of clean architecture is also connected to
the notion of “clean code” [19]. Clean code is
straightforward, easy to understand and “reads like
well-written prose”. Clean code never hides the
programmer's intent and is replete with clear
abstractions and control flow [5].

When creating a cloud solution, one of the first
decisions to make is which service(s) to utilize in
order to operate the applications [7]. Table 2 shows
the choices for which cloud services are best for
which types of applications.

Table 2. Cloud services’ suitability for various
application types [7]

W
eb

 se
rv

ic
e

M
ob

ile
 se

rv
ic

e

Se
rv

er
le

ss

V
irt

ua
l

M
ac

hi
ne

M
ic

ro
se

rv
ic

es

Monolithic and N-
Tier app

✓ ✓

Mobile app back
end

✓ ✓ ✓ ✓

Distributed system ✓ ✓

One of the simplest and most effective solutions

for managing cloud-based apps is the HTTP-based
service for hosting web applications. Some examples
of this service are Azure App Hosting Service, AWS
Elastic Beanstalk, and Google App Engine. They
provide a set of hosting services that cover the
complexity of the operating system and infrastructure
while hosting an application. They are highly
available by default and are operational at least
99.95% of the time. They share potent characteristics
such as automatic scaling, zero-downtime
deployments, and straightforward authentication and
authorization [7], [35]. Some of them enable
debugging the application while it is in production,
using tools such as Snapshot Debugger.

When developing a mobile application, a backend
that the application can connect to is required.
Typically, this is an application programming
interface (API) that the application can utilize to
access and store data [29]. Azure Mobile Apps and
AWS Amplify provide such solutions with unique
capabilities.

TEM Journal. Volume 12, Issue 4, pages 1985-1994, ISSN 2217-8309, DOI: 10.18421/TEM124-09, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 1987

For example, there is an offline sync that enables a
mobile app to keep functioning if there's no
connection to the backend, and the sync is refreshed
whenever the connection is re-established. Another
feature is sending push notifications to the mobile
apps, regardless of the platform they run on (iOS or
Android), with services such as Firebase Cloud
Messaging, Azure Notification Hubs, and Apple
Push Notification Service.

Serverless functions, also known as “function as a
service” (FaaS), are a cloud computing paradigm that
allows developers to compose and deploy individual
functions or code fragments without managing or
provisioning servers [18]. In a serverless setup, the
cloud provider handles server administration,
scalability, and infrastructural duties, freeing
developers to concentrate on writing and deploying
code [35].

Existing applications could be lifted and relocated
from virtual machines (VMs) operating in a local
data centre to VMs running in the cloud, making this
a simple approach to getting started. There are many
predefined VM images that are ready to use. Even so,
running the application in a VM does not offer any
optimizations. The operation staff is also accountable
for maintaining the operating system and anti-virus
software [7]. Azure Virtual Machines, Amazon EC2,
and Google Compute Engine are examples of such
solutions.

All the aforementioned types are created
individually as monolithic, large-core applications
that contain all of the domain logic. They have
components that communicate with one another
directly within a single server process [35]. A
monolithic application is a single, integrated unit,
whereas microservices divide the application into
several smaller units.

Microservices are an organizational and
architectural approach to developing software.
According to this approach, software is composed of
loosely connected services that are organized around
business capabilities and that can be independently
deployed and tested. These services communicate
with one another via well-defined APIs [29]. Large,
sophisticated applications may be delivered quickly,
consistently, and reliably. Microservices are
technology- and language-agnostic, so it is quite
possible for a single organization to utilize multiple
runtime platforms. Modern cloud platforms have
features such as scalability, availability, and
resilience that can be used to their fullest potential by
microservices [35]. Such cloud solutions are Azure
Kubernetes Service, Amazon EC2 & EKS, Google
Kubernetes Engine, Red Hat OpenShift,
DigitalOcean, and many more. Microservices
architecture is a catalyst and enabler for continuous
business transformation [14].

This paper begins with a detailed description of
DDD, highlighting its fundamental principles and
advantages. This will lay the groundwork for
understanding how DDD can be implemented
effectively in a cloud native service architecture.
Next, we will investigate how Command Query
Responsibility Segregation and Event Sourcing,
which have strong ties to DDD, can enhance the
application code further. In the end, we will examine
how DDD and Test-Driven development can
significantly benefit software development when
used together.

2. The Features of Domain-Driven Design in the

Context of Cloud Services

A web service, whether a monolith or part of a
distributed system, has certain features such as the
volume of information handled, efficiency, business
logic, and technological upgrading [25], [33]. DDD
strategies are beneficial for initiatives with a large
number of complex business principles, because they
can simplify the business logic. In other words, the
primary objective of DDD concepts is to deal with
the complexity of domain logic, which consists of
business rules, validations, and calculations [17].

The classic approach incorporates the separation of
services based on their technical and functional
characteristics [10]. It focuses on core capabilities
exposed as services. E. Evans [11], [12], on the other
hand, states that DDD provides the key ideas needed
to separate web services into different parts. The
DDD methodology offers a way of expressing the
actual world through a structured representation of a
solution that meets the requirements in the problem
space. These characteristics lead to improved
software architecture quality.

The focus should always be on the core domain.
Business logic complexity is the first indicator of
how complicated the problem domain in which a
software works is. A simple application that needs to
perform fundamental create, read, update and delete
operations (CRUD), is not particularly complex [8].
This situation can be handled with less complicated
methods. Simultaneously, an order management
system, which automates a significant portion of a
company's activity, must model all the processes
upon which the company acts and therefore manage a
large number of complex business responsibilities.
This system's business logic complexity may be
extremely high. Another attribute is its technical
complexity, a term that refers to the number of
algorithms that need to be implemented to make the
software work.

Martin Fowler [13] presents a diagram (Figure 1)
with time and cost on the Y axis and complexity on
the X axis.

TEM Journal. Volume 12, Issue 4, pages 1985-1994, ISSN 2217-8309, DOI: 10.18421/TEM124-09, November 2023.

1988 TEM Journal – Volume 12 / Number 4 / 2023.

In accordance with data-centric design patterns, the
curve indicates that beyond a certain level of
complexity, even a small increase in complexity
results in a significant cost peak.

On the other hand, the time and cost of a project
designed from a domain-centric perspective tended to
increase linearly with complexity, whereas the start-
up costs were quite high. According to DDD, use
cases should be modeled based on the way the
business actually operates, which is always evolving.

Figure 1. Domain-centric versus data-centric in the

context of a software development diagram depicting time
and complexity [13]

DDD offers a variety of technical concepts and
patterns to assist in the internal implementation [38].
Ubiquitous (universal) language (UL), bounded
context (BC), core domain, entities, value objects,
aggregates, and repositories, are the steps for
building a software project. Some individuals view
these technical rules and patterns as difficult-to-learn
obstacles that make it challenging to employ DDD
methodologies. However, the most critical aspect is
arranging the code so that it matches the business
problems [23].

Each industry and profession have its own
terminology. To build complex systems, IT teams
must learn the business terminology used by the
relevant stakeholders. A core principle of DDD is to
make it easier for domain experts and software
engineers to talk to each other by defining an explicit
UL. This language assists in bringing together the
stakeholder, the designer, and the programmer so that
they may construct the domain model(s) and then put
them into action [3]. Code written in the UL can
provide a hint for some edge cases that were not clear
enough at the start. For the idea of a UL to work, the
code base needs to be in sync with the terminology,
or, more specifically, classes and tables in the
database need to be named after the terms in the UL.
Common nomenclature facilitates the understanding
of user requirements. Batista's research [3] indicates
that this lays the groundwork for productive
interaction, so he seeks to develop a standard,
business-oriented language, with the primary
objective of preventing misunderstandings and
incorrect assumptions.

UL is utilized in documentation, conversations,
app code and testing code and is used by domain
experts and, delivery teams. UL evolves over time
and may be managed on any knowledge
collaboration platform. It helps in identify focus
areas for knowledge crunching, which is the process
of “coping” the knowledge received from the experts
into domain models [27].

The BC is a small area within the domain that
gives each element of the UL its own meaning [36].
Quite often, an application's code base becomes
unmanageable as its volume increases. A BC
illustrates how the program, and its development
were structured. Frequently, it corresponds to a
subdomain, which indicates how the business or
domain activity is divided [23]. Each BC is
developed independently. The domain model built
for a BC is applicable only within its boundaries.

A context map facilitates the identification and
management of interdependencies and collaborations
among BC [2]. It enables teams to comprehend the
structure of the larger system and understand how
their individual contexts integrate into the bigger
picture.

Even though a DDD application is governed by
behaviour [15], objects are still required. DDD
conveys distinct types of objects, characterized by
their identities or values.

An entity represents a uniquely identifiable
business object that encapsulates attributes and a
well-defined domain behaviour [2]. The definition of
an entity consists of attributes and behaviour. An
entity is something that can be tracked, located,
retrieved, and kept in long-term storage.

Value objects are small, simple objects whose
equality is not based on identity [2]. They are items
used to quantify, measure, or characterize a certain
topic. Value objects may have methods and
behaviours, but they should never have side effects.
Vernon [34] says that value objects should be used
instead of entities if possible.

An aggregate is a collection of connected items
that are modified as a single entity. Aggregates are
treated as a unit for data changes. They consist of one
or more entities and value objects that change
together. Before making modifications, it is
necessary to evaluate the consistency of the whole
aggregate [36]. Every aggregate must have an
aggregate root, which is the parent object of all
members. In some cases, the aggregate may have
rules that ensure all of the objects’ data are
consistent. Data changes in aggregates should adhere
to ACID, which means they should be atomic,
consistent, isolated, and long-lasting. The factory
pattern can be used for creating complex aggregates
[2].

TEM Journal. Volume 12, Issue 4, pages 1985-1994, ISSN 2217-8309, DOI: 10.18421/TEM124-09, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 1989

A repository is a collection of items of a particular
type. Repositories offer a unified abstraction for all
persistence-related problems. This makes it easy for
clients to obtain and manage model objects. The
public interface of a repository communicates design
decisions very clearly. Few objects ought to be
directly accessible; consequently, repositories
provide and regulate this access. An important
benefit of repositories is that they make the code
easier to test. They reduce the tight coupling with
external resources such as databases and data
providers, which would traditionally make unit
testing challenging. When code for data access is
wrapped in one or more well-known classes, it is
easier and safer to use.

Vernon describes domain events, saying they
should be used to capture an occurrence of something
that happened in the domain, and should be part of
the UL [34]. Events are helpful because they signal
that a certain thing has happened. A domain event is
essentially a message, a record of something that
happened in the past.

Model-driven design (MDD) provides a
framework for the implementation of modeled
systems. The previously listed elements of
construction have relationships. MDD expresses state
and computation through value objects, identity
through entities, and change through domain events
[28]. Repositories permit access to entities and
aggregates. Except for the events, they can all be
encapsulated in a factory.

3. Managing the Complexity Issues in Cloud

Services Through Layered Approach

DDD concepts create a structure known as onion

architecture [24]. The word onion is used because the
architecture has numerous layers and a central core.
The top layers are dependent on the bottom layers,
yet the bottom layers have no knowledge of the top
ones. Onion architecture illustrates that the
fundamental elements of the DDD should operate
independently of one another.

Figure 2. The fundamentals of DDD in onion architecture [24]

The middle section consists of notions including
entity, value object, domain event, and aggregate that
are connectable but unable to interact with the
elements from the upper level. The following layer
includes repositories, factories, and domain services;
they may be aware of one another and the four
fundamental components, but they should not
mention the application services [15]. User interface
and application services are on top.

The main reason for this isolation is to allow the

separation of concerns.
The most important aspect of designing and

establishing a service is setting its boundaries. Each
BC identifies the entities and value objects,
characterizes them, and combines them. Choosing
where to draw the border between BCs requires
balancing two competing objectives.

TEM Journal. Volume 12, Issue 4, pages 1985-1994, ISSN 2217-8309, DOI: 10.18421/TEM124-09, November 2023.

1990 TEM Journal – Volume 12 / Number 4 / 2023.

Creating a barrier around items that need cohesion
is the first step. The second goal is to avoid “chatty”
inter-unit communications. These objectives may
conflict with each other. Balance should be
accomplished by decomposing the system into the
smallest units feasible. In a single-bound context,
cohesion is crucial. Another way to look at this
aspect is to view it as autonomy. A unit is not
completely autonomous if it relies on another unit to
fulfil a request directly.

The majority of enterprise applications have
distinct tiers [8]. They help developers manage the
complexity of the code [17]. MDD isolates domain
expression using layers. Those layers have nothing to
do with the deployment of the service. When DDD
principles are employed, the elements may be
organized differently depending on the specific
implementation. Nonetheless, as shown in Figure 3,
there are a few common layers.

Figure 3. Dependencies between layers in DDD [8]

The application layer coordinates the execution

flow between various domain objects/entities to solve
problems. It also specifies the use cases and
operations that can be carried out within the service
and orchestrates interaction between the UI and the
core elements. Commonly, the application layer is
implemented as a web API or an MVC project. The
application layer depends on domains and
infrastructure.

The domain model layer encapsulates the
business logic and principles and constitutes the core
of the service. It contains domain objects/entities,
aggregates, value objects, and domain services.

The domain layer concentrates on solving business
problems and expresses the business domain's
concepts and behaviours. This layer should have
entirely decoupled and simple class objects to
implement “the heart of the software” from a code
perspective. The domain layer does not depend on
any other.

The infrastructure layer is responsible for
providing the domain layer with the necessary
technical facilities and support. The infrastructure
layer's primary function is to abstract and encapsulate
technical details and complexities. It provides
implementations for multiple concerns, including
data persistence, messaging, network
communication, integration with external services,
caching, and performance optimization.

4. Using Command and Query Responsibility

Segregation and Event Sourcing in Cloud
Services

Greg Young [8] introduced command and query

responsibility segregation (CQRS) in 2010 as an
extension of the DDD principles. Young based this
idea on Bertrand Meyer's command-query separation
principle [21]. Command-query separation (CQS)
states that every method must either be a command
that executes an operation that modifies the state of
the system or a query that provides data to the caller,
but not both [23]. Therefore, asking a question
should not affect the outcome of the response.
Methods should only return a value if they are
referentially transparent and do not have any side
effects, such as changing the state of an object or a
file in the file system. To follow this principle, if a
method changes some piece of state, it should always
be of type void. This increases the readability of the
code base. However, it is not always practical to stick
to the CQS paradigm. There are occasions when it
makes more sense for a method to have both a side
effect and a return value. One example of this is the
linear data structure stack. Its pop method removes
the element last pushed into the stack and returns it to
the caller. This solution violates the CQS concept yet
separating these duties into two distinct functions is
illogical.

The relationship between CQS and CQRS is that
the latter extends the same notion as the former to a
higher level. CQRS is seen as an architectural
pattern. Instead of focusing on methods such as CQS,
CQRS applies the same principles by facilitating the
separation of operations [28]: one for command
management, or writes, and the other for query
processing, or reads. CQRS is an object-oriented
expression of the domain and is frequently associated
with more complex business contexts.

TEM Journal. Volume 12, Issue 4, pages 1985-1994, ISSN 2217-8309, DOI: 10.18421/TEM124-09, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 1991

Typically, it is difficult to create one specific
unified model since retrieving and persisting data
have very distinct needs. By concentrating on each
command and query case individually, one can
develop a different strategy that makes the most
sense. In the end, there are two models, each of
which specializes in a certain purpose. Separation is
accomplished through clustering query activities into
one composition and commands into another. Each
one has a unique data model [8]. The application
layer turns any input into a command or a query and
sends it to a shared communication channel (message
handler). The three main categories of messages in
an application are commands, queries, and events.
They are all part of the core domain model, located
in the centre of the onion architecture. Commands
tell the application to do something; queries ask it
about something; and events are informational
messages. Commands trigger a reaction in the
domain model, while events are the result of that
reaction. Naming guidelines are associated with UL
and all three types of messages, with commands
always being in the imperative tense, queries usually
starting with the word GET, and events always being
in the past tense.

In addition, the query and command handlers can
be implemented within the same tier or on distinct
services so that they can be autonomously tuned and
developed by not harming each other, offloading, the
complexity from the code base [8]. This can be seen
as the single responsibility principle being used at the
architectural level.

The CAP theorem and CQRS have a close
relationship. The CAP theorem, also known as
Brewer's theorem, is a fundamental principle in
distributed computing that asserts that it is not
feasible for a distributed system to guarantee all three
of the following capabilities simultaneously:
consistency, availability, and performance [6]. If
consistency is maintained, every read operation
returns the most recent write or an error. Availability,
on the other hand, implies that every request receives
a response, even if all system nodes are down. With
partition tolerance, the system continues to function
even when communications are lost or delayed
across network nodes. Due to the impossibility of
choosing all three options, it is necessary to reach a
compromise. CQRS is effective because it provides
numerous opportunities by emphasizing optimal
decision-making in various circumstances.

By adopting CQRS, developers can design cloud
native services that efficiently handle high query
loads while ensuring data consistency through strict
command processing. CQRS is commonly referred to
as an interim stage preceding event sourcing. Event
sourcing complements CQRS by collecting all
system state changes as a series of events.

Event sourcing is a design technique based on the
concept that all changes to the state of an application
throughout its lifetime are recorded as a series of
events. As a result, serialized events become the
fundamental building blocks of the application. In the
event sourcing approach, the programs store
transactions but not their respective states. When a
state is needed, all transactions from the beginning of
time are applied. Nothing is deleted or updated from
the data repository. Because of this, there cannot be
any concurrent updating issues. Most applications
work by storing the current state of domain entities
and starting business transactions. Instead of storing
all the information in the columns of a single record
or in the properties of a single object, the state of the
entities is described by the sequence of events. This
is an event-based representation of an entity. As
described above, an event is something that occurred
in the past and is an expression of the UL.

Event storage may be relational, document-based,
or graph-based [9]; therefore, events may be stored in
an SQL or NoSQL database [26], [30] such as
PostgreSQL, MySQL, MongoDB, or Apache
Cassandra, or they may be stored using a specific
solution such as RavenDB or FaunaDB. Table 3
presents some examples of cloud-based options.

Table 3. Suitability of cloud-based storage options for
various business cases [7], [16]

R
el

at
io

na
l

U
ns

tru
ct

ur
ed

Se
m

i-
St

ru
ct

ur
ed

Tu

ne
ab

le

C
on

si
st

en
cy

G

eo
-

R
ep

lic
at

io
n

La
rg

e
D

at
a

Azure SQL ✓ ✓
Azure Cosmos ✓ ✓ ✓ ✓ ✓

Azure Blob ✓ ✓ ✓

Amazon RDS ✓ ✓ ✓
Amazon Dynamo ✓ ✓ ✓ ✓ ✓

Amazon S3 ✓ ✓ ✓
Google SQL ✓ ✓ ✓

Google Firestore ✓ ✓ ✓ ✓ ✓

As objects, domain events are an integral

component of a BC. They provide a way to talk
about important things that happen or change in the
system, and then, loosely connected parts of the
domain can respond to these events. In this manner,
the objects that raise the events do not need to
consider the action that must occur when the event
occurs. Similarly, event-handling objects do not need
to know where the event originated.

To obtain the entire state, it is necessary to replay
the program timeline from the beginning.

TEM Journal. Volume 12, Issue 4, pages 1985-1994, ISSN 2217-8309, DOI: 10.18421/TEM124-09, November 2023.

1992 TEM Journal – Volume 12 / Number 4 / 2023.

Using recorded events, it is possible to reconstruct
the state of an aggregate. This may sometimes
require the management of huge volumes of data. In
this case, snapshots, which represent the state of the
entity at a certain point in time, may be specified
[37]. Once stored, events are immutable. It is
possible to duplicate and repeat events for scalability
reasons.

The replay algorithm involves examining the data
and using logic to retrieve the relevant information.
Other, more intriguing situations, such as business
intelligence, statistical analysis and tracking the
history of a resource, may be addressed by ad hoc
projections. Events also, provide a powerful and
efficient approach to data warehousing, supported by
cloud services such as Amazon Redshift, Google
BigQuery, and Azure Synapse Analytics.

5. Applying Test-Driven Development Practice

in Cloud Services

Test-driven development (TDD) and DDD are two

potent methodologies that, when combined, can
increase the quality of cloud services and the
development process. By employing these practices,
developers and quality assurance engineers can
create a system that is more robust and reliable. TDD
encourages a rigorous testing process in which tests
are written prior to the implementation code; this
process follows best practices, ensuring that the
intended functionality is met. There is a three-step
procedure known as red, green, and refactor [22].
Creating a failing test for a piece of functionality is
the initial step. The second phase is the green step,
during which sufficient production code is created to
make the failed test pass. Refactoring is the last
phase in which both test and production code are
enhanced to maintain high quality. This cycle is
repeated for each piece of functionality in order of
increasing complexity in each method and class until
the whole feature is finished. The use of TDD
ensures that the testing process is what guides the
design. Testable code is what produces maintainable
code [4].

In the field of software testing, there are several
different sorts of tests. Some tests are subject matter
based – e.g., unit, integration, component service,
and user interface testing. Meanwhile, others are
determined by the purpose of the test – e.g.,
functional tests, acceptance tests, smoke tests, and
exploratory testing. Still others, are determined by
how they are being tested – e.g., automated, semi-
automated, and manual tests.

The test automation pyramid (Figure 4) depicts the
types of tests that should be performed at various
stages of the software development lifecycle and how
often they should occur in a testing suite to ensure
the quality of the program [17].

The notion behind the pyramid is that testers
should devote more effort to basic tests before
moving on to more complicated ones.

Figure 4. The agile test automation pyramid by Mike

Cohn [1]

In Figure 4, four different kinds of test are
identified:

1) Unit tests - automated tests that check how well
a single piece of code works on its own;

2) Service tests - automated tests that check how
well a group of classes and methods that provide a
service to users works;

3) UI tests - automated tests that check that the
entire application works (from the user interface to
the database);

4) Manual tests - tests performed by a person
which also check the full application's functionality;

The test automation pyramid captures the essence
of how each type of test becomes more expensive. As
a result, the system should have many low-cost tests
and a small number of high-cost tests.

By implementing TDD, programmers have the
ability to identify potential problems early on and
validate the veracity of the domain models. In
addition, the iterative nature of TDD enables frequent
feedback, which facilitates continuous refinement
and adaptability in cloud service development [31].

The techniques laid out in this article are not suited
to all situations and therefore have some limitations.
They set constraints that provide long-term benefits,
such as higher standards of craftsmanship. Time and
effort are required to properly comprehend and
implement the numerous DDD layers, patterns, and
concepts, which can be overwhelming. The learning
curve for DDD is steep, particularly for
inexperienced coders [8]. It is important to
emphasize that CQRS and most DDD patterns are
not architectural styles but merely architectural
patterns.

TEM Journal. Volume 12, Issue 4, pages 1985-1994, ISSN 2217-8309, DOI: 10.18421/TEM124-09, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 1993

Microservices and service-oriented architecture
(SOA) are examples of architectural styles, while
CQRS and DDD paradigms characterize something
contained within an individual unit of work [8]. At an
architectural level, the design of each element in
system shows its own trade-offs and internal design
decisions.

6. Conclusion

The domain driven design approaches have

emerged as a valuable methodology for building
cloud native service architectures. By focusing on the
core business domain and encapsulating it in a well-
defined, bounded contexts, they help to create
modular, scalable, and maintainable systems. By
combining mentioned approaches, organizations can
build systems that are not only technically robust but
also aligned with their business goals, requirements,
and objectives. Ultimately, the adoption of domain
driven design and cloud native architectures can help
organizations innovate faster, reduce costs, deliver
better value to their customers, and stay competitive
in a rapidly changing digital landscape.

Modification of the domain model is facilitated by
its cleanliness. The incapability to maintain an
adequate separation of concerns in enterprise grade
software is the primary cause of overwhelmed code
bases, leading to delays and even project failure. As
this article focuses mostly on the relevant
foundations, a case study on the domain driven
software development process could be presented as a
continuation.

Acknowledgements

This research is financially supported by NPD-
331/2023 from University of Economics - Varna Science
Fund.

References:

[1]. Ashbacher, C. (2010). Succeeding with agile:
Software development using Scrum, by Mike Cohn.
The Journal of Object Technology, 9(4).
Doi: 10.5381/jot.2010.9.4.r1

[2]. Avram, A. (2006). Domain-Driven Design Quickly
(first edit ed.). InfoQ

[3]. Batista, F. (2019). Developing the ubiquitous
language. The Domain Driven Design. Retrieved
from: https://thedomaindrivendesign.io/developing-
the-ubiquitous-language [accessed: 19 June 2023].

[4]. Bissi, W., Neto, A. T., & Emer, M. (2016). The
effects of test-driven development on internal quality,
external quality and productivity: A systematic
review. Information & Software Technology, 74, 45–
54. Doi: 10.1016/j.infsof.2016.02.004.

[5]. Booch, G., Maksimchuk, R. A., Engle, M. W., Young,
B. J., Conallen, J., & Houston, K. (2007). Object-
Oriented Analysis and Design with Applications.
Pearson Education.

[6]. Brewer, E. (2012). Pushing the cap: Strategies for
consistency and availability. Computer, 45(2), 23-29.

[7]. Caron, R. (2018). Get the Azure quick start guide for
.NET developers. Microsoft. Retrieved from:
https://azure.microsoft.com/en-us/blog/get-the-azure-
quick-start-guide-for-net-developers/
[accessed: 22 June 2023].

[8]. De La Torre, C., Wagner, B. & Rousos, M. (2023).
.NET microservices. architecture for containerized
.NET applications. Microsoft Learn.
Retrieved from: https://learn.microsoft.com/en-
us/dotnet/architecture/microservices/
[accessed: 22 June 2023].

[9]. Debski, A., Szczepanik, B., Malawski, M., Spahr, S.,
& Muthig, D. (2018). A scalable & reactive
architecture of a cloud application: CQRS and event
sourcing case study. IEEE Software, 35(2), 62–71.
Doi: 10.1109/ms.2017.265095722

[10]. Erl, T. (2007). SOA principles of service design.
Prentice Hall.

[11]. Evans, E. (2014). Domain-driven design reference:
Definitions and pattern summaries. Dog Ear
Publishing.

[12]. Evans, E. (2003). Domain-driven Design: Tackling
Complexity in the Heart of Software. Addison-Wesley
Professional.

[13]. Fowler, M. (2012). Pattern Enterprise Application
Architecture. Addison-Wesley.

[14]. Garverick, J., & McIver, O. (2023). Implementing
event-driven microservices architecture in .NET 7:
Develop event-based distributed apps that can scale
with ever-changing business demands using C# 11
and .NET 7. Packt Publishing Ltd.

[15]. Hippchen, B., Giessler, P., Steinegger, R. H.,
Schneider, M., & Abeck, S. (2017). Designing
microservice-based applications by using a domain-
driven design approach. International Journal on
Advances in Software, 10(3), 432–445.

[16]. Indrasiri, K., & Suhothayan, S. (2021). Design
patterns for cloud native applications: Patterns in
practice using APIs, data, events, and streams.
O’Reilly Media.

[17]. Khononov, V. (2021). Learning domain-driven
design: aligning software architecture and business
strategy. O’Reilly Media.

[18]. Kumar, V., & Agnihotri, K. (2021). Serverless
computing using Azure Functions: Build, deploy,
automate, and secure serverless application
development with Azure Functions (English Edition).
BPB Publications.

[19]. Martin, R.C. (2008). Clean Code: A Handbook of
Agile Software Craftsmanship. Pearson Education.

[20]. Martin, R. C. (2017). Clean Architecture: A
craftsman’s guide to software structure and design.
Prentice Hall.

[21]. Meyer, B. (1997). Object-oriented software
construction. Prentice Hall.

[22]. Myers, B. (2022). Red, green, refactor. What is test-
driven development. Medium. Retrieved
from:. https://medium.com/codecastpublication/red-
green-refactor-what-is-test-driven-development-
302794e06c [accessed: 27 June 2023].

https://thedomaindrivendesign.io/developing-the-ubiquitous-language
https://thedomaindrivendesign.io/developing-the-ubiquitous-language
https://azure.microsoft.com/en-us/blog/get-the-azure-quick-start-guide-for-net-developers/
https://azure.microsoft.com/en-us/blog/get-the-azure-quick-start-guide-for-net-developers/
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/
https://medium.com/codecastpublication/red-green-refactor-what-is-test-driven-development-302794e06c
https://medium.com/codecastpublication/red-green-refactor-what-is-test-driven-development-302794e06c
https://medium.com/codecastpublication/red-green-refactor-what-is-test-driven-development-302794e06c

TEM Journal. Volume 12, Issue 4, pages 1985-1994, ISSN 2217-8309, DOI: 10.18421/TEM124-09, November 2023.

1994 TEM Journal – Volume 12 / Number 4 / 2023.

[23]. Oukes, P., Van Andel, M., Folmer, E., Bennett, R.,
& Lemmen, C. (2021). Domain-driven design applied
to land administration system development: Lessons
from the Netherlands. Land Use Policy, 104, 105379.
Doi: 10.1016/j.landusepol.2021.105379

[24]. Palermo, J. (2013). The onion architecture : Part 4
– After Four Years. Jeffrey Palermo.  Retrieved
from: https://jeffreypalermo.com/2013/08/onion-
architecture-part-4-after-four-years/
[accessed: 01 July 2023].

[25]. Petrov, P., Krumovich, S., Nikolov, N., Dimitrov,
G., & Sulov, V. (2018). Web technologies used in the
commercial banks in Finland. In Proceedings of the
19th International Conference on Computer Systems
and Technologies, 94-98.

[26]. Petrov, P., Kuyumdzhiev, I., Malkawi, R., Dimitrov,
G., & Bychkov, O. (2022). Database Administration
Practical Aspects in Providing Digitalization of
Educational Services. International Journal of
Emerging Technologies in Learning, 17(20), 274-282.
Doi: 10.3991/ijet.v17i20.32785

[27]. Rademacher, F., Sachweh, S., & Zündorf, A. (2017).
Towards a UML profile for domain-driven design of
microservice architectures. In Cerone, A., Roveri, M.
(eds) Software engineering and formal methods:
SEFM 2017 collocated workshops: DataMod,
FAACS, MSE, CoSim-CPS, and FOCLASA, Trento,
Italy, September 4-5, 2017, 230–245. Springer
International Publishing.
DOI: 10.1007/978-3-319-74781-1_17

[28]. Rademacher, F., Sorgalla, J., & Sachweh, S. (2018).
Challenges of domain-driven microservice design: A
model-driven perspective. IEEE Software, 35(3), 36–
43. Doi: 10.1109/ms.2018.2141028

[29]. Steinegger, R. H., Giessler, P., Hippchen, B., &
Abeck, S. (2017). Overview of a Domain-driven
design approach to build microservice-based
Applications. In Third International Conference on
Advances and Trends in Software Engineering
(SOFTENG 2017), 79–87.

[30]. Stoyanova, M., Vasilev, J., & Cristescu, M. (2021).
Big data in property management. In AIP Conference
Proceedings, 2333(1). AIP Publishing LLC.

[31]. Stuckenberg, S. (2014). Exploring the organizational
impact of software-as-a-service on software vendors.
The role of organizational integration in software-as-
a-service development and operation. Peter Lang

[32]. Uludağ, Ö., Hauder, M., Kleehaus, M., Schimpfle,
C., & Matthes, F. (2018). Supporting large-scale agile
development with Domain-driven design. In
Garbajosa, J., Wang, X., Aguiar, A. (eds) Agile
processes in software engineering and extreme
programming 19th international conference, 232–
247. Springer. Doi: 10.1007/978-3-319-91602-6_16

[33]. Vasilev, J., & Stoyanova, M. (2019). Information
sharing with upstream partners of supply chains. In
International multidisciplinary scientific
geoconference: SGEM, 19, 329-336.

[34]. Vernon, V. (2016). Domain-driven design distilled.
Addison-Wesley Professional.

[35]. Vettor, R., & Smith, S. (2023). Architecting cloud
native .NET applications for Azure. Microsoft Learn.
Retrieved from: https://learn.microsoft.com/en-
us/dotnet/architecture/cloud-native/
[accessed: 02 July 2023].

[36]. Wlaschin, S. (2018). Domain modeling made
functional: tackle software complexity with domain-
driven design and F#. Pragmatic Bookshelf.

[37]. Young, G. (2019). Event centric: Finding simplicity
in complex systems. Addison-Wesley Professional.

[38]. Zimarev, A. (2019). Hands-on domain-driven design
with .NET Core: Tackling complexity in the heart of
software by putting Domain-driven design principles
into practice. Packt Publishing.

https://jeffreypalermo.com/2013/08/onion-architecture-part-4-after-four-years/
https://jeffreypalermo.com/2013/08/onion-architecture-part-4-after-four-years/
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/

