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Abstract – This research evaluates the reliability of a 
machine vision system connected to a collaborative 
robot. In recent scientific papers, the authors have 
focused on machine vision itself, machine vision 
systems and related theory in general, along with 
machine learning methods, and image processing itself. 
However, there seems to be a missing link between 
these topics and the industrial robot's accuracy in basic 
tasks when utilizing machine vision. The experiments 
conducted, took place within an Industry 4.0 
laboratory, where 3D-printed objects were utilized as 
test subjects. The collaborative robot, equipped with 
machine vision, performed tasks such as object 
removal and stacking. The evaluation focused on the 
success rate of object assembly and grasping. The 
paper discusses the integration of machine vision 
technology, previous research on reliability, and the 
use of a 2D camera for the collaborative robot. The 
findings contribute to understanding the potential of 
machine vision in enhancing efficiency and precision in 
collaborative robot workspaces.  
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1. Introduction

The introduction of industrial robots marked a 
significant milestone in the field of manufacturing, 
introducing increased levels of precision and 
efficiency.  

Over the years, the industrial robots have become 
integral to various industrial sectors, from 
automotive industry to electronics manufacturing [1], 
[2]. However, the ability of robots to work 
collaboratively with human operators, without the 
need for safety cages, has remained a persistent 
challenge. This problem was successfully addressed 
with the introduction of collaborative robots, that 
revolutionized the concept of human-robot 
interaction by enabling safe and efficient 
collaboration in shared workspaces [3]. 

An important element for the successful 
integration of industrial/collaborative robots is 
machine vision technology. Machine vision 
empowers robots with visual perception capabilities, 
allowing them to interpret and comprehend their 
surroundings. By using cameras and advanced image 
processing algorithms, robots equipped with machine 
vision systems can detect, recognize, and analyze 
objects, ensuring precise manipulation, inspection, 
navigation, or other required actions [4], [5], [6]. 

The objective of the paper is to present an 
evaluation of the reliability related to computer 
vision system connected to collaborative robot. The 
evaluation is based on the experiments performed in 
the laboratory of Industry 4.0 at the University of 
West Bohemia in Pilsen.  The specific objects needed 
for the experiments were printed on a 3D printer. The 
objects serve as building blocks for experimental 
assembly. The collaborative robot, through the vision 
process, is able to remove and stack objects over the 
entire field of view of the camera. The final 
evaluation is concentrated on the experiments of 
reliability in terms of the success rate of assembling 
and grasping each object. 

mailto:malaga@fst.zcu.cz
https://www.temjournal.com/
https://doi.org/10.18421/TEM124-02


TEM Journal. Volume 12, Issue 4, pages 1929-1938, ISSN 2217-8309, DOI: 10.18421/TEM124-02, November 2023. 

1930                                                                                                                             TEM Journal – Volume 12 / Number 4 / 2023. 

2. Literature Review 
 

This chapter focuses on providing a basic 
definitions of machine vision and state of art of the 
important research related to the topic of machine 
vision reliability.  

The definition of machine vision, according to the 
Automated Imaging Association, encompasses all 
industrial and non-industrial applications in which 
the combination of hardware and software provides 
devices with operational instructions based on image 
capture and processing [7]. According to the 
definition by Robotics Tomorrow, machine vision is 
the ability of a computer to perceive the 
environment. It utilizes one or more cameras with 
analog-to-digital conversion and digital signal 
processing. The image data is transmitted to a 
computer or a robot's control unit [8]. According to 
the definitions can be generally said that machine 
vision is ability of a computer / robot to perceive its 
environment. 

The reliability of machine vision systems has been 
researched in different ways by different authors. 
This topic is mentioned in the paper named Reducing 
Pseudo-error Rate of Industrial Machine Vision 
Systems with Machine Learning Methods [9]. The 
paper provides examples of possible applications of 
machine learning algorithms in manufacturing linked 
to the machine vision systems, as well as reducing 
the pseudo-error (false positive) rate of machine 
vision quality control systems. It shows that even the 
simplest algorithms and models can be effective in 
reducing the errors of machine vision systems and 
specifically in the paper are used convolutional 
neural networks that reduced the degree of pseudo-
error of the presented system [9].  

Other authors are concentrating on automated fault 
detection that has significant importance to the 
computer vision industry. In their paper named 
Automated Failure Detection in Computer Vision 
Systems [10] they used deep neural network to detect 
computer vision failures in vehicle detection tasks. 
They train neural network to learn to the estimates 
the output quality of vehicle detector and evaluates 
the results of comparison between their vehicle 
detector and human-annotated data [10]. 

In the paper named Developing a Machine Vision 
Inspection System for Electronics Failure Analysis 
[11] is the perspective of machine vision errors seen 
in the field of electronics industry. The papers aims 
to develop a machine vision image recognition 
system for intelligent decision analysis to resolve the 
seriousness of solder ball cracking. The verification 
of results demonstrates that the developed system 
and failure analysis achieve a consistency rate of 
over 85% in judging the severity of cracking.  

The system exhibits a false alarm ratio of 
approximately 9% and an escape ratio of around 16% 
[11]. 

The next relevant paper names: A Comparative 
Study of Machine Vision Based Methods for Fault 
Detection in an Automated Assembly Machine [12]. 
In the paper both normal and abnormal assembly 
machine conditions are compared. For comparison 
are used three methods that are afterwards evaluated 
[12]. 

The last relevant paper founded named Predicting 
Failures of Vision Systems [13]. Overall, the paper 
emphasizes the significance of addressing failures in 
computer vision systems. The authors promote 
specific metrics to evaluate failure prediction. Then 
the authors propose a straightforward approach called 
ALERT, which can predict the accuracy or failure of 
various computer vision systems on individual input 
images. The proposed ALERT approach shows is 
evaluated on four datasets [13]. 

Mentioned related papers [9], [10], [11], [12], [13] 
are concentrating purely on machine vision, but they 
do not include and therefore not evaluate connected 
industrial robot linked to the machine vision system. 
The reliability of grasping related to the robot is 
therefore not evaluated. The advantage of the papers 
[9] and [10] are the number of tested samples, the 
paper [9] tested approx. 23 000 pcs. The paper [10] 
tested approx. 8 000 video frames. 

Other perspective on the problematics of vision 
system errors presents Erickson-Davis in the paper 
What it is to see: Artificial vision as constitutive 
interaction [14]. The paper concentrates on Artificial 
vision system of person, specifically visual prosthesis 
devices - devices that electrically stimulate the visual 
system to restore vision of people who have lost it. It 
evaluates errors of current systems and proposes the 
new approach to overcome them [14]. 

The paper [14] is also concentrating on the field 
not so related to the industrial machine vision, but 
more to the field of human artificial vision. 

The mentioned papers show the potential of the 
research in the topic of testing and evaluation of the 
reliability related to computer vision system 
connected to collaborative robot. 

 
3. Using a 2D Camera for a Collaborative Robot 

 
The experiment was conducted using the Industry 

4.0 workplace, which is part of the Department of 
Industrial Engineering and Management, Faculty of 
Mechanical Engineering, University of West 
Bohemia in Pilsen. The workplace (Figure 1) consists 
of a work area (conveyor belt) and the collaborative 
robot itself. The rest of the equipment shown in the 
figure is used for another experiment and is therefore 
not shown below. 
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For the purpose of the experiment, the workspace 
was divided into three areas. The workspace consists 
of an area dedicated to the base, an area for 
assignment and rewiring objects, and an area for 
removing objects. A camera and a collaborative 
gripper are installed on the collaborative robot. 

 

 
Figure 1.  Workplace 

 
The collaborative robot in the workplace is the 

Fanuc CR-7iA/L. This series of collaborative robots 
is based on the LR series. The robot has a maximum 
payload of 7 kilograms, a range of 911 millimeters 
and works in six axes. It supports the latest Fanuc 
features (iRVision and Force Sensing). The robot is 
equipped with a small R-30iB controller [15]. The 
controller also provides full connectivity via 
Ethernet, allowing easy connection of robots, remote 
computers and other hardware [16]. The 
collaborative gripper is from Schunk (Figure 2). 
Safety is ensured through current limiting. Schunk's 
interface works with collaborative robots from Kuka, 
Fanuc and Universal Robots [17]. 
 

 
 

Figure 2.  Used collaborative gripper by Schunk 
 

The camera system used is iRVision 2D is also 
from Fanuc, which uses the Fanuc SC130EF2C 
camera to allow the robots to see.  

This camera, positioned at the robot's end effector 
(Figure 2), is capable of detecting colors. iRVision is 
simple to use and can be operated without complex 
programming or expertise. iRVision is fully 
integrated and does not require external equipment. 
The system eliminates the need to settle the product 
in a precise position for the robot to grasp. 
 
3.1.  Description of the Experiment 
 

The robot's task will be to assemble a 3D spatial 
assembly with existing layers. Two types of 
assemblies were planned, with the working names of 
the assemblies chosen as garage and house. The 
assemblies will be composed of 3 types of objects 
(Figure 3) and a base (Figure 4). The 3x3 base and 
objects were printed on a 3D printer at the University 
of West Bohemia. 

 

 
 

Figure 3.  3D printed assembly objects 
 

 
 

Figure 4.  3D printed base 
 

The actual process of assembling the objects is 
started by recognizing whether the robot will build a 
garage or a house.  
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The recognition is done by a camera, where a 
piece of paper with the capital letter G for the garage 
or D for the house is presented on the line being 
scanned (Figure 5). 

 
Figure 5.  Decision papers for a robot with a camera 

 
The vision process decides which program is 

executed. The letter G indicates the execution of the 
Garage program, and the letter D indicates the 
execution of the House program. In the absence of 
either letter, the robot will not proceed. 

Figures 6 and 7 show the different floors of the 
house and garage. 

 
Figure 6.  The house plan 

 

 
Figure 7.  The garage plan 

 
After the input is loaded, the corresponding 

program is started and folding begins. Folding 
consists of three different objects.  

The objects must be fed manually to the line. In 
the absence of an object, a base, or a build error, the 
robot will stop and declare an error. The goal is to 
completely assemble the house or garage. 

The objects in Figure 3 are taken by the robot 
from the area imaged by the camera. For object 2, 
there was a problem when there was an overlap and 
the object started to overbalance (the case for the 
garage build Figure 7). This problem was solved by 
drilling holes on one side and adding weights to the 
object. For Object 2, we have to solve the removal in 
two cases so that the robot always grabs the correct 
side of the object, while not overturning and cutting 
the cables (cables to connect the gripper and the 
camera). 
 
3.2.  Camera System Setup 
 

In total, 7 processes had to be set up for scanning 
(letter G, letter D, base, object 1, object 2 twice and 
object 3). In Figure 8 a total of 4 frames are shown.  

 
• The blue frame shows what type of process setup 

we chose " 2-D Single-View Vison Process" and 
then locators are added to better recognize the 
object(s). The "Snap Tool" is used to set up the 
camera and the "GPM Locator Tool" is used to 
learn the object. 

• In the yellow box is the area we are scanning. 
• In the orange frame we have the detailed settings 

of the "GPM Locator Tool". The GPM Locator 
Tool settings have a lot of values/pointers and we 
are trying to get the best object recognition. In the 
locator, we teach a process to recognize the object 
with the goal of the highest score. 

• In the green box you can see the object's rating, 
which includes the score, which has a maximum 
value of 100. 

 

 
 

Figure 8.  Score of the base 
 
3.3.  Experimental Procedure 
 

The purpose of the experiment is to create a 
working system and then evaluate the build/grab 
quality. To create a functional system, it is necessary 
to determine the layout of programs, subroutines, and 
vision processes so that in the end the whole system 
can work by running one program. 
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 The experiment should recognize the assignment 
and then assemble the assemblies called “house” or 
“garage” from the objects. The resulting assemblies 
have a predefined structure. 

Fanuc's iRVison environment will be used to 
create the vision processes. The focus will be on 
creating a first high quality process that will then be 
used for the rest of objects which will be "learned" 
from it. The scores for the processes must not be 
lower than 95% (100% = best) in the iRVison 
environment. The scores represent the quality of the 
recognition of each object. 

For the programming part, a hierarchy of 
programs/subroutines was created to keep 
programming simple and not create too many 
unnecessary programs. The hierarchy must be 
followed when creating programs, see Figure 9. The 
creation of programs should go from Program DP1, 
DP2, ... to top of the hierarchy, as shown in Figure 
9). Description of the programs is following: 

• DP1, DP2, DP3 are programs related to grasp of 
objects 1, 2, 3. 

• DP_Base is program related to identification of 
the base platform. 

• DP_Main is the main program including all the 
subprograms. 

• DP_Dum is the program related to build the 
“house” assembly. 

• DP_Garaz is the program related to build the 
“garage” assembly. 

• DP1_Re-grasp, DP2_Re-grasp, DP2_Re-grasp are 
programs related to regrasping described in the 
next paragraph. 

The re-grip programs are added as they will 
improve the quality of the grip for the build and will 
be finished separately so that in case of discarding, 
only the program calls from DP1, DP2, ... can be 
removed and the whole programs do not have to be 
rewritten. The re-grip programs will be created after 
the completion of DP1, DP2, ... programs and then 
continue the hierarchy from the bottom. The re-
grasping programs should be an intermediate step 
between the first grab and settling on the assembly. 
The grasped object will be placed on the area 
between the assembly and the objects to be taken, 
and then the camera will find a position where the 
object is in the center of the field of view and 
perform a new take, which is more accurate and 
reduces the possibility of an error in the fit to the 
assembly. 
 

 
 

Figure 9.  Hierarchy of programs/subroutines 
 

Flowcharts (7 in total) were also created to ensure 
that the programs met all the requirements and alert 
the user in case of an error. The flowchart shows the 
logic of the program. It is used to graphically 
represent the steps of the algorithm and contains 
patterns, where each pattern has its own 
specification. 

The flowchart is for the program "DP_Main" 
(Figure 10). The description of the program 
"DP_Main" is as following.  

In the beginning, we load the vision processes 
"DPDUM" and "DPGARAZ".  

These processes have a recognition assignment 
stored in them (letters D and G). In the next step, we 
assign "DPDUM" to "vision get_offset" i.e., the 
program will compare the process "DPDUM" with 
the camera image in the next step. If the process 
"get_offset" and the camera match, the program 
"DP_DUM" is called, if not, we assign the process 
"DPGARAZ" to "get_offset". If the process and the 
detected camera image match, the program 
"DP_GARAZ" is called, if not, we use the jump 
command "1" and move to the beginning again, 
where the program should list what the error was. 
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Figure 10.  DP_Main program flowchart 
 
3.4.  Programming Collaborative Robot 
 

Fanuc has its own programming language called 
KAREL. KAREL is a lower-level programming 
language similar to Pascal [18]. There are two terms 
used in robot programming [18]. 

• The first variant is online programming. Online 
programming means that a human is working with 
a real robot, there is direct interaction. This 
variant was also used in this practical part. The 
robot directly drives to the desired positions, 
either with the help of a control pendant or the 
human can guide the robot to the position (in this 
case, but we still have to use the pendant to store 
the position) 

• The second option is offline programming. 
Offline programming takes place in an application 
that virtually replaces the workstation. This type 
of programming is mainly used in companies 
where they cannot afford to stop the line for 
testing or learning the robot. 

The following Figure 11 shows the general basic 
movement in the Fanuc Karel programming language 
with additional information. 
 

 
 

Figure 11.  General basic movement in the Fanuc Karel 
programming language  

 
3.5.  Sample of the Main Program 
 

An example of the generated code of the program 
DP_Main in the Fanuc Karel programming language 
is shown in Figure 12. 

 

 
 

Figure 12.  DP_Main program in Fanuc KAREL 
programming language 

 

The explanation of the code sample is as follows. 
At the beginning of the code is "LBL2" because of 
skipping in case the robot does not load the input. 
Then it waits for the main line button, which starts 
the whole system. The robot then goes to the point. 
The point was chosen so that the quality of the photo 
could be as good as possible. The main program 
works with the vision process, where it distributes 
what construction is done. The condition of which 
program to execute was solved using "JMP LBL". If 
"GET_OFFSET" does not load the corresponding 
vision process "DPDUM", the program jumps using 
"JMP LBL" to a second "GET_OFFSET" which tries 
to load the vision process "DPGARAZ".  
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If neither "OFFSET" loads the appropriate process, 
the program skips to line 14 of the code, throws an 
error and jumps to the beginning of the program (the 
first line of code). 

If "OFFSET" loads the vision process, it then calls 
the "DP_DUM" program or the "DP_GARAZ" 
program using the "CALL" command, depending on 
the type of vision process loaded. 
 
4. Evaluation of Experiments 
 

The evaluation is divided into 2 experiments (build 
and grasp) and a final overall evaluation. The aim of 
the experiments was to test the success/error rate of 
object assembly and grasping. The experiments were 
performed with re-gripping. In the case of re-
gripping, the object always has a high score because 
it is placed directly at the center of the camera's field 
of view. 
 
4.1.  Experiment 1: Assembling the Objects into the 

Final Assembly 
 

The aim of the experiment is to determine the 
quality of the assembly of objects on the base plate. 
Out of the 14 assembly tests (7 houses and 7 
garages), there were two assembly errors shown in 
Table 1. Both errors were identical and occurred 
when the garage was assembled with object 1. The 
errors occurred on floor 4, where object 2 is also 
assembled (this is step 12). All tests were performed 
under 600 Lx illumination.  

During testing, the platform was moved in the 
centre of the camera's field of view and with different 
rotations. 

 

Table 1.  Assembly errors in assembly tests 

 
 
Corrective Actions 

The step improvement was fixed by manually 
changing the coordinates of the already saved point 
where the gripper releases object 1.  

A new point and therefore a new save position of 
object 1 was not possible, as the assembly was 
already offset in relation to the first "learning" 
objects and assembly, and thus the newly saved point 
would not fit the camera coordinate system. 

After the implementation of the corrective action, 
no further compilation errors were found, and it can 
be confirmed that the corrective action significantly 
reduced the error rate of the system. 
 
4.2.  Experiment 2: Object Recognition and Grasping 
 

The aim of the experiment is to determine the 
quality of vision and grasping processes in the field 
of view of the camera. The grasping was performed 
during the set-up and afterwards by testing individual 
objects in the field of view of the camera. The 
grasping during the assembly process recorded 8 
errors, as shown in Table 2.  

 
 Table 2.  Errors during the assembly process

 
 

Errors were recorded for all objects, and almost 
always the error was related to grasping the object at 
the edge of the camera's field of view. The scores for 
each object were also checked at each position in the 
field of view, results are in Table 3. The table 
represents quality scores for individual objects in 
each part of the camera’s field of view. 

 
Table 3.  Quality scores for individual objects in each part 
of the camera’s field of view 
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Corrective Actions 
Error on object 1, where object 1 was confused 

with object 2. On subsequent examination, it was 
found that object 1 could easily be confused with 
both object 2 and object 3 as it is part of these 
objects. The vision process was redesigned for object 
1. The value of "Area Overlap" was reset to 0%. The 
"Area Overlap" function is a spatial numerical 
measurement that calculates the total area, length, or 
number of overlaps between features in the current 
layer and features in the target layer. 

After the corrective action was taken, no further 
errors occurred for Object 1, and object 
sampling/grabbing was very reliable even at the edge 
of the camera field of view. 
 
4.3.  Overall Evaluation 
 

The build did not show any other errors after 
correcting the error of saving object 1 to the build. 
The claim that the system error rate is 0% is not true, 
but the error rate is very close to 0%.  

 
 

Testing the build was very challenging due to the 
non-functional automated program of the 
collaborative robot, so it was not possible to perform 
more tests. This evaluation shows the accuracy that 
can be achieved by combining robot and machine 
vision. 

The grasping differs for each object. After fixing 
object 1, no errors were observed during the retrieval 
process or at the edge of the camera's field of view, 
allowing for relatively large possibilities of object 
placement on the retrieval surface. For object 2, 
errors mainly occurred due to placement at the edge 
of the camera's field of view, where the object was 
poorly recognized due to its coarse (gray) surface, 
resulting in no recognition of object 2 on the surface 
at all. For object 3, errors also occurred due to 
placement at the edge of the camera's field of view, 
leading to retrieval errors caused by poorer edge 
rendering and displacement of the central (retrieval) 
point. This evaluation demonstrates that the entire 
camera's field of view can be utilized. With more 
complex objects, the quality slightly deteriorates 
towards the edges of the field of view, as can be seen 
in Figure 13. 
 

 
 

Figure 13.  Object 3 with shifted centre and with visible deterioration of edge detection 
 
5. Discussion 

 
Out of a total of 8 errors, 4 were caused by 

improper grasping of object 3. The incorrect grasping 
consistently occurred at a similar retrieval position. 
Object 3, as shown in Figure 13, has a shifted center 
due to distortion, making it problematic for retrieval. 
One possible solution could be reducing the camera's 
field of view. 

 In the case where object 3 is not within the 
camera's field of view, the program would declare an 
error of "object 3 not found," and the camera would 
automatically adjust to a different capturing position. 

From Figure 13, it can be observed that the centre 
identified through the vision process does not align 
precisely with the centre of the object. This 
difference results in issues with grasping. 
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 During the "learning" phase, the object is taught 
that the gripper aligns precisely with the centre, and 
perfect grasping occurs when the centre is accurately 
detected. In this case, the centre is shifted, affecting 
the robot's approach accuracy. Due to the gripper 
type and overgripping, the robot can tolerate slight 
deviations in determining the object's centre. 
However, if the centre of the object is significantly 
displaced, the robot's gripper encounters difficulties 
in correctly grasping the object. 

The other 3 errors were caused by not loading 
object 2. The error in not finding object 2 may be 
because object 2 had to be loaded more than once 
and the loading resulted in small differences in the 
individual objects 2 (3 pieces in total). Again, the 
errors were only at the edges of the camera field of 
view. The solution is to modify object 2 to make the 
objects identical. 

In contrast to the previously mentioned papers [9], 
[10], [11], [13], the presented research investigates 
the error rate and accuracy of actual object grasping 
by a collaborative robot connected to a machine 
vision system versus pure machine vision evaluation. 

In paper [12], the machine vision system is 
associated with a single-purpose system performing 
simple assembly. Compared to this research, the 
research we present focuses on a more complex 
device, i.e., a collaborative robot and a more complex 
assembly. Thus, the use of a collaborative robot 
instead of a single-purpose system is closer to the 
trends of the Industry 4.0 concept. 

The advantage with comparison to related paper 
[14] is that our research is concentrating in the field 
industrial machine vision. 
 
6. Conclusion 
 

The research was developed at the Industry 4.0 
laboratory at the Faculty of Mechanical Engineering 
of the University of West Bohemia in Pilsen. The 
aim of the work was to devise the logic of the 
experiment to achieve the highest success rate, to set 
up programs and vision processes so that everything 
works with the least number of errors and to test the 
success of the assembly and grasping of individual 
objects. While evaluating and testing the experiment, 
problems arose that were adjusted/corrected to 
benefit the success rate of the overall system. 

In the practical part, the logic of the whole 
experiment (system) was described with the 
description of the individual objects, assemblies, 
tasks, and workplace. Subsequently, all vision 
processes were listed with a description of the vision 
process at the base and a description of the individual 
setup. In the programming section, basic commands 
were explained, the structure of the main program 
was shown, and flow charts of all programs were 
presented.  

Flow charts were made to better understand the 
logic behind the creation of the programs. The 
linking and calling of programs are explained in the 
program hierarchy. 

In summary, the theoretical part of the thesis 
describes machine vision systems and their use in 
cooperation with robots. The practical part focuses 
on the description and setup of basic movements, 
vision processes, programming of the robot and 
testing the success of the created experiment. Testing 
revealed some errors, which were described and 
eliminated at the end of the work. 

In the following research, the research team's plan 
is to focus on testing grasping accuracy under 
different lighting conditions. The second area of 
planned research is then to acquire a 3D camera and 
compare the results presented in this paper with the 
results measured using the 3D camera. 
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