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Abstract – This paper proposes to combine both the 
texture and deep features to build a robust diabetic 
foot ulcer recognition system since both features 
represent valuable information about the disease. The 
proposed system consists of three stages: feature 
extraction, feature fusion, and DFU classification. The 
feature extraction is performed by extracting the 
handcrafted and deep features. The feature fusion is 
performed by concatenating both feature vectors into a 
single vector. The DFU classification is performed by 
training a random forest classifier on the fusion vectors 
and the resulting classifier is used then for 
classification. Experimental results showed that the 
proposed approach provides satisfactory performance 
in DFU, ischaemia, and infection classification. 

Keywords – diabetic foot ulcer, classification, 
ischaemia and infection, hand-crafted features, deep 
features, fusion features. 

1. Introduction and Background

DFU such as ischaemia and infection which 
happen due to elevated blood glucose can lead to 
amputation of the lower limb if not diagnosed early 
and properly [1].  
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Recently, computer-based systems using artificial 
intelligence algorithms such as image processing, 
computer vision, and machine learning algorithms 
have begun to play a significant role in many medical 
and non-medical applications using various imaging 
modalities such as MRI, CT, and ultrasound, and 
DFU classification is no exception. Building such a 
system has several advantages such as developing 
patient care, early diagnosis, and reducing mistakes 
in the traditional care systems. Despite the existence 
of several DFU detection and classification systems 
[2], [3], [4], [5], the development of a fully 
automated DFU diagnosis system is still in the earlier 
stages. In this paper, we introduce a new fully 
automatic DFU diagnosis system. 

Generally, the building of the computer-based 
DFU automatic diagnosis system can be performed 
using either conventional or convolutional 
approaches. In the conventional approach, the 
handcrafted features regarding the meaningful 
information (e.g. DFU region) in the input image can 
be extracted using any texture descriptor. Texture 
descriptors are a widely used approach for feature 
extraction in a wide range of medical and non-
medical applications as in [6], [7], [8], [9], [10], [11]. 
The extracted features can be used further to train 
one of the machine learning approaches for final 
classification (e.g. DFU recognition) [2]. Another 
approach for building the DFU diagnosis system is to 
use a deep representation for building an end-to-end 
diagnosis system as in [2], [4], [5], [6], 7], [8], [9], 
[10], [11], [12], [13], [14], [15], [16], [17]. 
Although the literature showed that the deep-based 
DFU classification systems achieved better 
performance than handcrafted-based DFU 
classification [2], we argue that both deep and 
handcrafted features are important to distinguish 
between healthy and unhealthy skin regions. This is 
obvious because in medical images texture features 
are important because they reflect the distribution of 
pixels and underlying structure of different diseases  
[18], [19], [20], [21]. Moreover, deep features are 
also important as demonstrated in achievements in 
several medical and non- medical applications (e.g. 
DFU diagnosis) [6], [7], [8], [9] [13], [14], [15], [16], 
[17] [21], [22]. 
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Interestingly, in recent years the researchers' focus 

has been shifted to combine handcrafted features 
with deep features which have shown impressive 
performance in several computer vision tasks and 
applications such as face detection [23], facial 
expression recognition [23], age estimation [23], and 
image recognition [24]. In other words, the models 
that were trained on the fused features from both the 
handcrafted and deep features achieved significantly 
higher accuracy than those trained on the handcrafted  
features only or deep features only as in [22], [23], 
[24], [25], [26], [27]. Therefore, in this study, we 
propose to use the fused features from both the 
handcrafted and deep features for the recognition of 
DFU with the presence of ischaemia and infection. 
The underlying hypothesis of this feature fusion is 
that usually, the same pattern (e.g. DFU image) can 
be represented using several approaches and each 
representation (feature vector) reflects different 
characteristics of the same pattern. Therefore, when 
combining all feature vectors in a single feature 
vector, there is no doubt that the effective 
discriminant information of each vector will be kept 
to a certain degree in the resulting vector which is 
very important to increase the classification and 
recognition rate.  

Contribution:  for compact representation and 
accurate DFU recognition, in this paper, we present a 
new and automatic DFU recognition system in which 
the advantages of both handcrafted and deep features 
are combined together to represent the input image. 
To this end, in addition to the deep features, we use 
two of the widely used texture descriptors: HOG [28] 
and Gabor [29] descriptors for hand-crafted feature 
extraction. The extracted feature vectors from the 
HOG and Gabor descriptors are concatenated with 
the deep feature vector and the resulting vector is 
used for training an RF classifier which can then be 
used for DFU classification of a new image. Figure 
1. shows an overview of the proposed method.  
 

 
Experimental results on DFU datasets of healthy, 

unhealthy, ischaemic, non-ischaemic, infection, and 
non-infection classes showed that our proposed 
approach of using several feature vectors jointly 
achieved higher performance than that of using those 
feature vectors separately. 

The rest of this paper is structured as follows. In 
Section 2, a brief background about the used methods 
and a description of the proposed methodology are 
given. In Section 3, the databases used to evaluate 
the proposed system are described. Section 4 reports 
experimental design and results. Section 5 presents 
conclusions of the proposed method. 
 
2. The Proposed Method 

 
The aim of this study is to investigate the 

advantages of fusing different feature vectors 
(handcrafted features and deep features) in the 
performance of DFU classification. To this end, we 
present a fully automatic DFU recognition system for 
classifying the input image into healthy, unhealthy, 
ischaemia, non-ischaemia, infection, and non-
infection classes. The proposed system is divided 
into three main stages. These stages are feature 
extraction, feature fusion, and DFU classification. In 
the feature extraction stage, the hand-crafted (Gabor, 
HOG), and deep texture descriptors are used to 
extract the DFU features. In the feature fusion stage, 
the hand-crafted (Gabor, HOG) and the deep feature 
vectors are concatenated together to form the fusion 
feature vector. In the DUF classification stage, the 
fusion feature vectors are used to train a RF classifier 
which can be used then to classify the DFU into 
healthy, unhealthy, ischaemia, non-ischaemia, 
infection, and non-infection classes. Figure 1. 
describes the stages of the proposed system. See text 
in sections 2.1, 2.2, and 2.3 for more details about 
stage1, stage2, and stage3 of the proposed system 
respectively.   

Figure 1. An overview of the proposed DFU classification system 
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2.1. Stage 1: Feature Extraction 
 

In the proposed study, three types of texture 
features are extracted: HOG feature [28], Gabor 
features [29], and deep features [30]. In the 
following, we describe those features briefly. 

HOG-based features: we used the HOG texture 
descriptor developed in [28] to extract the DFU’s 
HOG features ℎ. HOG is one of the widely used 
feature extraction methods in the field of object 
detection and classification. It uses the distribution of 
the local gradient in the image to capture the 
structure and shape of an object with its gradient 
magnitude and direction. See reference [28] for more 
details regarding the HOG descriptor. In this study to 
extract the HOG features, we first convert the input  
image of the DFU to a grey image; we then divided 
the grey image into 8 * 8 pixel cells from which the 
HOG features are extracted. Figure 2. (c) shows an 
example of the HOG response of a DFU image 
which shows the texture that corresponds to the DFU 
area. 

Gabor-based features: we used the Gabor Filter 
developed in [29] to extract the DFU’s Gabor 
features 𝑔. The Gabor filter represents one of the 
commonly used texture descriptors in the field of 
image classification. It is a linear filter similar to the 
human visual system used to capture any specific 
frequency content found in a specific direction of an 
image. Mathematically, a 2D Gabor filter is a 
Gaussian function modulated by a sinusoidal wave 
and it consists of real and imaginary parts. The real 
part can be calculated as: 

 

𝑔ఒ,ఏ,ఙ,ఊሺ𝑥, 𝑦ሻ ൌ exp ቆെ
𝑥ᇱ ൅ 𝛾𝑦ᇱଶ

2𝜎ଶ ቇ cos ቆ2𝜋
𝑥ᇱ

𝜆
൅ ∅ቇ 

 

Where 𝑥̀ ൌ 𝑥𝑐𝑜𝑠𝜃 ൅ 𝑦𝑠𝑖𝑛𝜃, 𝑦̀ ൌ 𝑥𝑠𝑖𝑛𝜃 ൅ 𝑦𝑐𝑜𝑠𝜃, 
λ is the wavelength of Gabor filter, 𝜃 is the 
orientation of the normal to the stripes of the 
function, ∅ is the phase offset, 𝛾  is the spatial ratio 
and 𝜎 is the standard deviation of the Gaussian 
envelope. See Reference [29] for more details about 
the Gabor filter. In this study, to calculate the Gabor 
features vector and the Gabor filter responses, we 

first convert the RGB image to the grey image and 
then calculate eight filter banks of four orientations 
𝜃: ሺ0, 𝜋/4, 𝜋/2,3𝜋/4ሻ, and two-phase offset 
∅: ሺ0, 𝜋/2ሻ. The values of  𝜎, 𝜆, 𝛾 are set to 2, 2.5, 
and 0.3 respectively which are experimentally 
determined. Figure 2. (b) shows the response of the 
Gabor filter to the DFU image which reflects the 
texture that corresponds to the disease area.  

Deep-based features: we used GoogLNet CNN 
architecture developed in [30] to extract the deep 
features 𝑑.  GoogLNet was the winner in the 
ILSVRC-2014 challenge. Using the GoogLeNet  
model, both the multi-size inputs can be utilized and 
the pooling can be performed on the same input and 
at the same time. After that, the results will combine 
into a single feature layer in order to allow for the 
model to benefit from multi-level feature extraction 
of every input. The input layer of GoogLeNet takes 
an image size of 224*224*3 and the last layer is a 
softmax layer for classifying 1000 different classes. 
In this study, to extract the deep features, we first 
resize the DFU training images to 224*224 in order 
to fit the shape input of the GoogLeNet models. 
Second, we train the classification layer (last layer) 
on the two classes (binary classification). Third, the 
features of the last convolutional layer before the 
fully connected layers were extracted and used to 
train an RF classifier which can be used for DFU 
versus normal classification. Figure 2. (d) shows an 
example of deep features of the DFU image which 
show the texture that corresponds to the DFU area. 
 
2.2. Stage 2: Feature fusion 

 

Feature fusion is the process of combining several 
feature vectors into a single feature vector. The 
underlying hypothesis of the feature fusion is that 
usually, the same pattern (e.g. DFU image) can be 
represented using several approaches and each 
representation (feature vector) reflects different 
characteristics of the same pattern. Therefore, when 
combining all feature vectors in a single feature 
vector, there is no doubt that the effective 
discriminant information of each vector will be kept 
to a certain degree in the resulting vector which is 

Figure 2. Example of hand-crafted and deep texture descriptors responses: (a) original image, (b) Gabor-based 
response, (c) HOG-based response, and (d) deep-based response 
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very important to increase the classification and 
recognition rate. Therefore, in this study we propose 
to combine the extracted features vectors 𝑔, ℎ, 𝑑 into 
a single feature vector 𝑐 as is equation (2).  

 

𝑐 ൌ ሺ𝑔்|ℎ்|𝑑்ሻ்                                        (2)      
                                                                                                  

2.3. Stage 3: DFU classification 
 
In this study, DFU, ischaemia, and infection 

classification were performed using the RF classifier 
developed in [31]. The RF classifier is chosen since it 
is one of the commonly and successfully used 
classifiers with many binary and non-binary 
classification problems, and it has maximum-margin 
separation with linearly separable and non-separable 
data such as DFU. See references [31] for more and 
complete details about the RF classifier, its 
parameters, and its application in several 
applications. In this study, the number of trees was 
set to 100 in all the experiments which gave the best 
results. Each tree makes a prediction and then the 
prediction of all trees will be combined into a single 
forest prediction and the average is calculated by: 

 

𝑃ሺ𝑦|𝑣ሻ ൌ
ଵ

ோ
 ∑ 𝑃ሺ𝑦|𝑣ሻோ

௥ୀଵ                      (3) 
 

 Where 𝑅 is the number of trees in the forest,  
𝑝ሺ𝑦|𝑣ሻ is the probability of the class 𝑦 given the 
feature vector  𝑣.  
 
3. Model Formal 

 
Suppose we have N labelled training images, where 

for each image Ii we have an index y୧ indicating the 
DFU class and a feature vector v୧ሺh, g, d, cሻ. Thus 
y ∈ ሼ0, 1ሽ for healthy and unhealthy classes, 
ischaemic and non-ischaemic classes, or infected and 
non-infected classes. The h, g, d, and c indicate HOG 
features vector h, the Gabor features vector g, deep 
features vector d and their combination vector c 
respectively. Given the extracted features h, g, d, c for 
each image Ii and their corresponding class y୧, 
training an RF classifier function P on each feature 
vector v୧ separately is one approach to predict the 
class y of new images I as follows: 

 

𝑦ሺ𝐼|ℎሻ ൌ 𝑚𝑎𝑥௬ 𝑃ሺ𝑦|ℎሻ  𝑜𝑟                                          (4) 
𝑦ሺ𝐼|𝑔ሻ ൌ 𝑚𝑎𝑥௬ 𝑃ሺ𝑦|𝑔ሻ 𝑜𝑟                                          (5) 
𝑦ሺ𝐼|𝑑ሻ ൌ 𝑚𝑎𝑥௬ 𝑃ሺ𝑦|𝑑ሻ                                               (6) 
 

Where yሺIሻ is the most probable class of the input 
image being class y. Pሺy|hሻ is the probability of the 
input image being class type y given the HOG 
feature vector h. Pሺy|gሻ is the probability of the input 
image being class type y given the Gabor feature 
vector g. Pሺy|dሻ is the probability of the input image 
being class type y given the deep feature vector d. 
Another approach is to train the classifier function P 
on the fusion vector c as in equation (7): 

 
𝑦ሺ𝐼|𝑐ሻ ൌ 𝑚𝑎𝑥௬ 𝑃ሺ𝑦|𝑐ሻ                                         (7) 
 

Where 𝑃ሺ𝑦|𝑐ሻ is the probability of the input image 
being class type 𝑦 given the fusion feature vector 𝑐. 
Fusing all the feature vectors into a single feature 
vector in this way is important since different 
information regarding the disease can be gained and 
the unhealthy region whose appearance looks like a 
normal region can be dealt with more effectively 
leading to a robust recognition. 

 
4. Database 

 

In this paper, Part-A [2] and Part-B [3] DFU 
datasets that were collected in Lancashire teaching 
hospitals in the United Kingdom (UK) were used to 
evaluate the performance of the proposed method. 
The Part-A dataset contains 1,679 images divided 
into 641 foot images of healthy class and 1038 foot 
images with Ulcer (DFU) [2]. The Part-B dataset 
contains ischaemic parts and infected parts which are 
two types of DFU diseases. The ischaemic part 
contains 9870 foot images divided equally into 
ischaemic and non-ischaemic foot images. The 
infection part contains 5892 foot images also divided 
equally into images of infected and non-infected feet. 
Some examples of the Part-A and Part-B datasets are 
shown in Figure 3. Table 1. describes these databases 
and their particularities [3]. 

 
Table 1. Datasets descrption 
 

 

 

Database classes Images labels 

Part-A Healthy 641 0 

Part-A Unhealthy 1038 1 

Part-B Ischaemia 4935 0 

Part-B Non-ischaemia 4935 1 

Part-B Infection 2946 0 

Part-B Non-infection 2946 1 
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5. Experiments Design and Results  
 
In this section, we report a series of experiments to 

evaluate and compare the performance of using 
handcrafted features and deep features jointly to the 
performance of using them separately in the DFU 
recognition task with the existence of ischaemia and 
infection classes. The first experiment is focused on 
assessing the proposed method in recognizing 
healthy and unhealthy (DFU) classes. The second 
experiment is focused on assessing the proposed 
method in recognizing ischaemic versus non-
ischaemic classes. The third experiment is focused on 
evaluating the proposed method in recognizing 
infected versus non-infected classes. 

Evaluation Metric: in this study, the area under the 
curve (AUC) of the receiver operating characteristic 
(ROC) was used to evaluate the performance of the 
proposed approach. The process of calculating the 
ROC is performed by determining the accuracy of 
the classifier between two classes (binary 
classification) and then plotting the true positive rate 
versus the false positive rate. In addition to the ROC, 
we calculate sensitivity (SEN), specificity (SPE), 
precision (PRE), accuracy (ACC), and F-measure (F) 
calculated using Eq. (8), Eq. (9), Eq. (10), Eq. (11), 
and Eq. (12) respectively.  

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ  
்௉

்௉ା  ிே
                                      (8) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ  
்௉

ி௉ା  ிே
                                      (9) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  
்௉

்௉ା  ி௉
                                         (10) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ  
்௉ାிே

்௉ା்ேାி௉ା  ிே
                            (11)    

 𝐹 െ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ൌ  
ଶ∗்௉

ଶ∗்௉ାி௉ା  ிே
                        (12) 

 
 
Where TP, FN, FP, and TN referred to a true 

positive, false negative, false negative, and true 
negative respectively. In all experiments, we 
performed 5-fold cross-validation experiments and 
then calculated a mean accuracy, standard deviation, 
and AUC of the 5 folds. During each fold, images of 
each dataset are divided into the training set (80% 
images), validation set (10% images), and testing set 
(10% images). After that, we interchanged the 
validation and testing sets in order to make sure that 
we tested every image in the dataset exactly once.  

 
5.1. Healthy Versus Unhealthy Classification 

Results  
 
Using the Part-A dataset of healthy and unhealthy 

classes, we extracted four different feature vectors: 
Hog feature vector ℎ, Gabor feature vector 𝑔, deep 
feature vector 𝑑, and fusion feature vector 𝑐. Given 
the extracted features, we trained four RF classifiers: 
HOG-based RF classifier, Gabor-based RF classifier, 
deep-based RF classifier and fusion-based RF 
classifier using equations 4, 5, 6, and 7 respectively 
which are used then to estimate the probability of 
healthy versus unhealthy classes. Figure 4. and Table 
2. show ROC curves and cross-validation mean 
results. These results demonstrated that training the 
RF classifier using HOG, Gabor, and deep features 
jointly have better performance than using those 
features separately (see ROC curves in Figure 4.). 
Results in Table 2. showed that training the RF 
classifier on the fusion features vector significantly 
increased the AUC from 0.88, 0.90, and 0.92 using 
HOG features, Gabor features, and deep features, 
respectively, to 0.94 using those features jointly.  

Figure 3. Sample images of part-A and Part-B datasets 
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Moreover, the recognition results of the proposed 

system using combined features using the part-A 
dataset achieved improvements of 1%, 1%, 1%, 2%, 
2%, and 2% in SEN, SPE, PRE, ACC, and AUC 
respectively, as illustrated in Table 2. when 
compared to the HOG, Gabor, or deep features only. 

 
5.2. Ischaemia Versus non-ischaemia Classification 

Results 
 

Using the part-B dataset, practically 
ischaemia/non-ischaemia part, we extracted four 
different feature vectors: HOG feature vector ℎ, 
Gabor feature vector 𝑔, deep feature vector 𝑑, and 
fusion feature vector 𝑐. Given the extracted features, 
we trained four RF classifiers: HOG-based RF 
classifier, Gabor-based RF classifier, deep-based RF 
classifier and fusion-based RF classifier using 
equations 4, 5, 6, and 7 respectively which are used 
then to estimate the probability of ischaemia versus 
non-ischaemia classes. Figure 5. and Table 3. show 
ROC curves and cross-validation mean results. These 
results demonstrated that training the RF classifier 
using HOG, Gabor, and deep features jointly have 
better performance than using those features 
separately (see ROC curves in Figure 5.). Results in 
Table 3. showed that training the RF classifier on the 
fusion feature vector significantly increased the AUC 
from 0.95 using HOG features, 0.96 using Gabor 
features, and 0.96 using deep features to 0.97 using 
those features jointly. Moreover, the recognition 
results of the proposed system using combined 
features on ischaemia dataset achieved improvements 
of 2%, 1%, 1%, 2%, 1%, and 1% in SEN, SPE, PRE, 
ACC, and  

 

 
 
AUC respectively, as illustrated in Table 3. when 

compared to the HOG, Gabor, or deep features only. 
 

5.3. Infection Versus non-infection Classification 
Results  

 
Using part-B dataset, the infection/non-infection 

part, we extracted four different feature vectors: 
HOG feature vector ℎ, Gabor feature vector 𝑔, deep 
feature vector 𝑑, and fusion feature vector 𝑐. Given 
the extracted features, we trained four RF classifiers: 
HOG-based RF classifier, Gabor-based RF classifier, 
deep-based RF classifier and fusion-based RF 
classifier using equations 4, 5, 6, and 7 respectively 
which are used then to estimate the probability of 
infection versus non-infection. Figure 6. and Table 4. 
show ROC curves and cross-validation mean results. 
These results demonstrated that training the RF 
classifier using HOG, Gabor, and deep features 
jointly have better performance than using those 
features separately (see ROC curves in Figure 6.). 
Results in Table 4. showed that training the RF 
classifier on the fusion feature vector significantly 
increased the AUC from 0.73% using HOG features, 
0.77% using Gabor features, and 0.78 using deep 
features to 0.81% using those features jointly. 
Moreover, the recognition results of the proposed 
system using combined features on infection dataset 
achieved improvements of 5%, 3%, 5%, 5%, 1%, and 
3% in SEN, SPE, PRE, ACC, and AUC respectively, 
as illustrated in Table 4. when compared to the HOG, 
Gabor, or deep features only. 

 
 

Figure 4. ROC curves comparison of four different 
features in healthy versus non-healthy classification: HOG 

features, Gabor features, deep features and fusion 
features. Overall the fusion features method achieved the 

best results 

Figure 5. ROC curves comparison of four different 
features in ischaemia versus non-ischaemia 

classification: HOG features, Gabor features, deep 
features and fusion features. Overall the fusion features 

method achieved the best results 
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Results in Table 4. showed that training the RF 

classifier on the fusion feature vector significantly 
increased the AUC from 0.73% using HOG features, 
0.77% using Gabor features, and 0.78 using deep 
features to 0.81% using those features jointly. 
Moreover, the recognition results of the proposed 
system using combined features on infection dataset 
achieved improvements of 5%, 3%, 5%, 5%, 1%, and 
3% in SEN, SPE, PRE, ACC, and AUC respectively, 
as illustrated in Table 4. when compared to the HOG, 
Gabor, or deep features only. 

 
5.4. Comparison with Baseline 

 

In Table 5., we compare our results to the results 
of other approaches using the same dataset. These 
results demonstrate that the results of our approach 
are satisfactory and higher than others especially 
with the presence of ischaemia and infection classes. 
 
6. Discussion   

 
In this study, a fully automatic DFU classification 

system is proposed which can be used for early DFU 
detection and to reduce the negative complications of 
the disease. In the proposed system since the texture 
and deep features of the DFU image hold valuable 
information regarding the DFU disease, we argue 
that using all the image features by combining both 
the texture and deep features is important for an 
accurate and robust DFU classification. In this study, 
a fully automatic DFU classification system is 
proposed which can be used for early DFU detection 

and to reduce the negative complications of the 
disease. In the proposed system since the texture and 
deep features of the DFU image hold valuable 
information regarding the DFU disease, we argue 
that using all the image features by combining both 
the texture and deep features is important for an 
accurate and robust DFU classification. In section 5, 
we reported extensive experiments using two of the 
recently publish DFU datasets to demonstrate the 
effectiveness of the proposed hypothesis in the DFU 
classification problem. We demonstrated that training 
the classifier on the fusion features of both the hand-
crafted and deep features greatly improved the 
recognition rate of DFU classification. This is clearly 
due to the participation of several features which 
helped to increase the discriminant information 
regarding the diseases. In addition, it can be seen 
from experimental results that the recognition result 
of deep-based DFU recognition is slightly better than 
that of both Gabor-based and HOG-based features. 

 
7. Conclusion  

 
Recently, most DFU classification systems use 

deep features or hand-crafted features for DFU 
classification. Since both features are extracted from 
the same pattern and contain valuable information of 
the DFU disease, in this study, we performed several 
experiments to investigate the advantages of using 
both the hand-crafted and deep features jointly on the 
performance of automatic DFU recognition. The 
hand-crafted features are extracted using two of the 
widely used texture descriptors: HOG and Gabor, the 
deep features are extracted using GoogLNet network. 
We have shown that using the fusion features of the 
hand-crafted and deep features have a significant 
effect on the accuracy of DFU recognition. The 
proposed system achieved satisfactory performance 
that can generalize well across different DFU classes 
including healthy vs. unhealthy, ischaemic vs non-
ischaemic, infected vs non-infected classes. 
Experimental results using two hand-crafted features, 
deep features, and their combination on two DFU 
datasets demonstrated that using the fusion of hand-
crafted and deep features reported better performance 
than using those features separately. That 
performance gain is due to the discriminant 
information of the same pattern that is extracted 
using different feature vectors. 
 

 

 

 
 
 

Figure 6. ROC curves comparison of four different 
features in infection versus non-infection 

classification: HOG features, Gabor features, deep 
features and fusion features. Overall the fusion 

features method achieved the best results
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Table 2. DFU classification results: Comparison among Gabor-based, HOG-based, deep-based,  
and fusion-based RF classifiers 

 

Features  SEN SPE PRE ACC F AUC 

HOG-based 0.89± 0.07  0.73 ± 0.20  0.86 ± 0.03  0.84 ± 0.04  0.86 ± 0.04  0.88 ± 0.15 

Gabor-based 0.89 ± 0.03  0.71 ± 0.34 0.87 ± 0.19 0.85 ± 0.19 0.89 ± 0.07 0.90 ± 0.16 

Deep-based 0.86 ± 0.01 0.83 ± 0.04 0.87 ± 0.04 0.86 ± 0.05 0.87 ± 0.04 0.92 ± 0.01 
Fusion-based 0.90 ± 0.04 0.84 ± 0.05 0.88 ± 0.05 0.88 ± 0.08 0.89 ± 0.03 0.94  0.020 

 

Table 3. Ischaemia classification results: Comparison among Gabor-based, HOG-based, deep-based,  
and fusion-based RF classifiers 

 

Features SEN SPE PRE ACC F AUC 

HOG-based 0.89± 0.12  0.88 ± 0.03  0.92 ± 0.01  0.89 ± 0.04  0.90 ± 0.06  0.95 ± 0.01 

Gabor-based 0.91 ± 0.05  0.87 ± 0.04 0.93 ± 0.09 0.90 ± 0.07 0.92 ± 0.05 0.96 ± 0.06 

Deep-based 0.91 ± 0.03 0.88 ± 0.02 0.93 ± 0.03 0.90 ± 0.02 0.92 ± 0.01 0.96 ± 0.01 

Fusion-based 0.93 ± 0.02 0.90 ± 0.05 0.94 ± 0.03 0.92 ± 0.02 0.93 ± 0.08 0.97  ± 0.02 
 

Table 4. Infection  classification results: Comparison among Gabor-based, HOG-based, deep-based,  
and fusion-based RF classifiers 

 

Features SEN SPE PRE ACC F AUC 

HOG-based 0.68± 0.01  0.66 ± 0.06  0.67 ± 0.02  0.67 ± 0.04  0.69 ± 0.06  0.73 ± 0.02 

Gabor-based 0.68 ± 0.08  0.67 ± 0.04 0.68 ± 0.07 0.67 ± 0.08 0.75 ± 0.03 0.77 ± 0.03 

Deep-based 0.69 ± 0.01 0.68 ± 0.05 0.68 ± 0.02 0.68 ± 0.03 0.75 ± 0.05 0.78 ± 0.01 

Fusion-based 0.74 ± 0.92 0.71 ± 0.05 0.73 ± 0.02 0.73 ± 0.01 0.76 ± 0.03 0.81 ±  0.06 
 

Table 5. Comparison with other method 
 

Dataset Reference Method Sen Spe Pre Acc F-Measure AUC 

DFU 

 
[2] 

LBP 0.92 0.76 0.88 0.87 0.90 0.93 

LBP + HOG 0.88 0.84 0.91 0.87 0.89 0.93 

LBP + HOG + Colour 0.90 0.85 0.90 0.88 0.90 0.94 

LeNet (CNN) 0.91 0.81 0.87 0.87 0.89 0.93 

[5] 

VGG16 0.90 - 0.92 - 0.91 - 

Alexnet (CNN) 0.87 - 0.91 - 0.89 - 

GoogLeNet (CNN) 0.91 - 0.96 - 0.93 - 

DFU-QUTNet 0.94 - 0.95 - 0.95 - 

 Ours 0.90 0.84 0.88 0.88 0.89 0.94 

Ischaemia 
 

[3] 
Ensemble (CNN) 0.89 0.92 0.92 0.90 0.90 0.90 

Ours 0.93 0.90 0.94 0.92 0.93 0.97 

Infection [3] 
Ensemble (CNN) 0.80 0.74 074 0.73 0.72 0.73 

Ours 0.74 0.71 0.73 0.73 0.76 0.81 
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