
TEM Journal. Volume 9, Issue 4, Pages 1364‐1371, ISSN 2217‐8309, DOI: 10.18421/TEM94‐07, November 2020.

1364 TEM Journal – Volume 9 / Number 4 / 2020.

Developing an Application for Researching
the RSA Algorithm Behavior on a

Multithread Platform
Nina Sinyagina 1, Gergana Kalpachka 1, Velko Todorov 2, Ventsislav Kalpachki 3

1 South-West University “Neofit Rilski”, 66 Ivan Mihailov Str., Blagoevgrad, Bulgaria
2 Sofia University “St. Kl. Ohridski”, 15 Tsar Osvoboditel Blvd., Sofia, Bulgaria

3 Technical University of Sofia, 8 Kiment Ohridski Blvd., Sofia, Bulgaria

Abstract – The article is focused on issues concerning
the design of all needed software for researching the
speed of the RSA encryption algorithm executed on a
multithreaded platform. The base structure of the
application is described in detail as well as the testing
plan and algorithm. Shown is a method to handle and
control all threads during the processes of encryption
and description. The final results are visualized
graphically though diagrams.

Keywords – multithreading, cryptographic
algorithms, asymmetrical encryption algorithm RSA.

1. Introduction

The article is a continuation on a previous research
by the same authors on multithreaded RSA
algorithms and their conceptual and architectural
model [1].

The current article is focused more on the practical
application of the problem: creating an application
for analyzing the multi-core RSA algorithms in terms
of speed. To achieve its goal, the application needs to
meet the following criteria [2], [3]:

 use of accurate time measuring means;
 correct execution and functionality of the RSA

encryption and decryption algorithms;

DOI: 10.18421/TEM94‐07
https://doi.org/10.18421/TEM94-07

Corresponding author: Gergana Kalpachka,
South‐West University “Neofit Rilski”, 66 Ivan Mihailov
Str., Blagoevgrad, Bulgaria.
Email: kalpachka@swu.bg

Received: 10 August 2020.
Revised: 12 October 2020.
Accepted: 18 October 2020.
Published: 27 November 2020.

© 2020 Nina Sinyagina at al; published by
UIKTEN. This work is licensed under the Creative
Commons Attribution‐NonCommercial‐NoDerivs 4.0
License.

 The article is published with Open Access at
www.temjournal.com

 automation of the test procedures;
 good visual representation of the end results [4].

The application user interface needs to be as
simple as possible, not taking too much
computational resources [5], [6]. The test machine
needs not to be overloaded or working on other tasks
during the test, except the necessary operating system
processes. This ensures correct and accurate test
results, with small margin for error [7], [8].

The test user interactions with the application
should be limited to only two: when passing the input
parameters and when receiving the output test results.
For better visualization of the final results, a software
for graphical representation of data can be used to
project the test output [9].

Since the application is for test purposes only, all
input parameters can be set as global parameters. For
convenience they are reduced to minimum, while
they are still able to define all types of procedures
required to correctly measure the end results. In order
to achieve this, additional blocks need to be added
for automatic changes in the input data like
generating new RSA key pairs [10], [11], generation
of data for encryption with different length, control
over the used threads by the system during the test
execution, etc.

2. Application Architecture

The programming language used for creating the
application is Java. In Java, the different objects are
defined as classes. The classes are a combination of
variables (object attributes) and functions (object
behavior) connected in a logical structure.
Combining classes produces packages. Packages are
used to group classes in one functional unit, which
allows for easier integration and migration into other
projects. The code needs to be properly split into
classes and packages, which allows easier readability
of all functions.

https://doi.org/10.18421/TEM94-07

TEM Journal. Volume 9, Issue 4, Pages 1364‐1371, ISSN 2217‐8309, DOI: 10.18421/TEM94‐07, November 2020.

TEM Journal – Volume 9 / Number 4 / 2020. 1365

Initialization

Splitting input data into
small chucks for each thread

Initialization of all threads with
proper input data

Saving references for all threads

Selecting first thread

Mark as finished and exclude from cycle

no

yes

Is finished?

Select next
thread reference

no

yes

Is started? Starting thread

no

yes

All threads done?

The output result
of all threads is collected and merged
in the same order it was split before

starting the threads

Thread management class

Figure 1. Structure of the encryption and decryption processes management

The test application made out of two packages:

 multithread_rsa: consists of all functions for the
execution of the multithreaded RSA algorithm’s
encryption and decryption processes. The
package is independent and can be exported and
used separately as an independent task. It
consists of the classes for encryption and
decryption, both inheriting the thread class
(needed for thread management) and a class for
RSA key pair generation. These are the

minimum requirements needed to execute the
required task.

 rsa_speed_test: consists of all functions for test
task management and time measurement. The
package is an example implementation of the
multithread_rsa package. It consists of the
following objects: class for time measurement
and methods for implementation of the
multithread_rsa package.

TEM Journal. Volume 9, Issue 4, Pages 1364‐1371, ISSN 2217‐8309, DOI: 10.18421/TEM94‐07, November 2020.

1366 TEM Journal – Volume 9 / Number 4 / 2020.

Classes for Encryption and Decryption

The classes RSA_encrypt_thread and
RSA_decrypt_thread (from the multithread_rsa
package) are used to encrypt and decrypt the input
data. Both inherited the thread class, which allows
them to be executed multiple times in parallel. The
parameters for each of the class are as follows:

 id: the start order of each thread needs to be
noted and then used to correctly merge the output
data in order;

 encryption/decryption keys: RSA keys are
required to run the encryption and decryption
algorithm, the public key is required for
encryption and the private key for decryption;

 input data for encryption/decryption: the
information each thread is required to convert
(encrypt or decrypt), for this test the type of the
variable is set to string, to be more flexible and
easier to visualize;

 output data: every thread needs to collect the
output data until it is needed for collection;

 finish flag: a flag indication when the job for the
current task is done. This is required for easier
thread management and data collection.

All parameters are defined as private for the class
and cannot be directly accessed by other classes. This
lowers the risk of invalid data and computational
errors during the processes.

The public methods of the encryption and
decryption processes are:

 initialization: start of thread and setting initial
parameters (id, encryption keys and data to work
with);

 “run()” method: the run() method from the
thread class needs to be defined for every child
class to use the parallelism. In this scenario it
will just point to the private method encrypt() or
decrypt();

 return of output data: result of the operation of
the thread (encryption or decryption). In a similar
way to the input, the output is also type string, to
be easier to visualize;

 return of thread id: a simple function, outputting
the id of the current thread, required when
collecting and arranging data from all threads;

 status check: method to validate if the current
thread has finished its task and availability of its
output.

The only private methods in the encrypt and
decrypt classes are the corresponding functions
called by the run() method and task done method –
used to update the finished flag and signalize that the
thread work is done.

3. Structure of the Thread Management

The module for managing the multiple RSA thread

tasks consists of two functions: one for controlling
the encryption block and one controlling the
decryption block. Both of them follow the same steps
to execute the required tasks (Fig. 1.).

The first step is to initialize the functions. This
includes setting the data for encryption/decryption,
passing the public or private keys required and the
number of threads that will work on the job.

After the initialization the input information is split
into smaller chunks depending on the number of
threads to be used. The goal is to split the data in a
way so all threads have relatively similar work time.

Then each thread is being separately initialized by
passing all required data to it, including the
calculated chunks of data to be encrypted/decrypted.
Reference to every thread is saved, so it can be used
later on in the management process.

All thread managing operations have the following
stages: thread starting, status monitoring, data
collection. All stages act as a state machine that
cycles through all threads until all of them are done.

The first stage is to check the process start. If a
thread is not running, it will be started and this action
will be marked. If the thread is running, then the state
machine checks its current status (finish flag). If the
thread has done its task and raised the finished flag,
the state machine marks it as ready.

Once all tasks are marked as ready the data
collection can take place. The data needs to be saved
in the same order as the input was split. This is
essential to properly assemble the result.

4. Structure of the Test Method

The main settings for the test method are defined

with its input parameters: maximum number of
threads to use, RSA key length, size of string to be
used for encryption and decryption and number of
test repeats (used to minimize the measurement
error).

Figure 2. shows the structure of the test method.
The first step from the test method is to create a

random string with the given size. The string will be
used to be encrypted and then decrypted back. After
that the RSA key pair is generated based on the
preset key length.

The next stage is the cycle for executing the
encryption and decryption procedures. The cycle is
broken once the preset test count is reached. After all
tests are done, the average time is calculated and
printed out.

After that, the number of maximum threads to use
is reduced by one and all tests are redone and their
average result is measured again. This is repeated
while the number of threads to use is one or more.

TEM Journal. Volume 9, Issue 4, Pages 1364‐1371, ISSN 2217‐8309, DOI: 10.18421/TEM94‐07, November 2020.

TEM Journal – Volume 9 / Number 4 / 2020. 1367

5. Test Planning

The research aims to be a base for comparison of
the encryption and decryption processes speed of
data with different sizes on a multithreaded platform.

To achieve correct and accurate results, the
following criteria need to be met:

 Multiple execution of each test: average results
lower the risk of errors generated by a lot of

random events that can occur during testing and
resource usage spikes caused by operating
system processes.

 Idle system during testing: no other applications
should be running on the system while the tests
are taking place, so there is a minimum change in
the available system resources during all tests.
Only the necessary system processes are allowed
to run.

Testing method

Star
decryption test

Star
encryption test

no

yes

Are all tests done?

Average the time result for each test
and print it out in the console

End of test method

no

yes

Is the current
thread count one

or less?

Reduce the number of
threads used for the tests

by one

Start test method
Loading input parameters

Generating a random string
with a given length

Generating an RSA key pair
for encryption and decryption

Initializing
the multithread managing class

Setting the number of threads to be used
(according to the test setup parameters)

Starting the test cycle

Input parameters
 Maximum thread count to be used
 Number of tests to run
 Size of input data to generate
 RSA key length

Figure 2. Structure of the test method

TEM Journal. Volume 9, Issue 4, Pages 1364‐1371, ISSN 2217‐8309, DOI: 10.18421/TEM94‐07, November 2020.

1368 TEM Journal – Volume 9 / Number 4 / 2020.

 Comparing tasks with identical input
parameters: when comparing test results, it is
essential to use the same data to encrypt and
decrypt. The size of the input data is only
modified when changing the length of the input
data to run a different comparison test.

 Display result in specific format: the output test
information needs to be presented in an
understandable format and needs to be easy to
export for visual representation of the data.

The tasks of the test module are: generating an
RSA key pair, generating information for
encryption/decryption, starting all defined tests and
outputting result information.

The following test scenarios/criteria will be
evaluated:

 Speed when using different number of threads:
the main purpose of the research. Requires
multiple tests with the same input parameters
executed on different number of threads.

 Speed of encryption/decryption of data with
different sizes: a sub-goal of the research is to
find the optimal number of threads to be used for
input data with different sizes.

 Speed when using Intel’s Hyper Threading
technology: the idea is to check if Hyper
Threading helps to speed up the RSA
encryption/decryption processes.

All tests are using 1024 bit RSA keys.
According to these tests, the main parameters to

base the comparison will be:

 number of parallel processes;
 size of input data to encrypt/decrypt;
 time for execution.

6. Results

The tests are run with combinations of the
following parameters:

 different sizes of information to encrypt/decrypt
(10, 100, 1 000, 10 000, 50 000, 100 000 and 1
000 000 symbols);

 different number of threads used – minimum 1,
maximum 8 (4 of these are virtual threads using
Intel’s Hyper threading technology);

 each test is run 100 times and only the average
result is taken into account.

This makes a total of 56 000 tests.
After running all tests, the result data is saved and

visualized into graphs (Fig. 3.–6.).

7. Conclusions

As anticipated, the results show that when using a
larger size of input data, the time taken for the
encryption and decryption processes is less when
using a bigger number of parallel processes.

Figure 3. Time to encrypt and decrypt text with size of 100 characters

TEM Journal. Volume 9, Issue 4, Pages 1364‐1371, ISSN 2217‐8309, DOI: 10.18421/TEM94‐07, November 2020.

TEM Journal – Volume 9 / Number 4 / 2020. 1369

Figure 4. Time to encrypt and decrypt text with size of 50 000 characters

Figure 5. Time to encrypt and decrypt text with size of 1 000 000 characters

TEM Journal. Volume 9, Issue 4, Pages 1364‐1371, ISSN 2217‐8309, DOI: 10.18421/TEM94‐07, November 2020.

1370 TEM Journal – Volume 9 / Number 4 / 2020.

According to the output data, the decryption time

is much higher than the encryption time, which is
expected given that the decryption calculations are
much more complicated. Because of this, the data is
better visualized when split based on the process
type: encryption or decryption. Still the relation of
using multithread technology has similar effect on
both processes.

Most of the tests show almost 50 % time reduction
when using two threads instead of one. Comparing 1
thread with 3 threads gives almost 60 % time
reduction and 4 threads – 65 %. Intel’s Hyperthread
technology saves additional 5 % time when used on
big input data (when using 5-8 threads).

Figure 6. Time for encryption/decryption using different number of threads

TEM Journal. Volume 9, Issue 4, Pages 1364‐1371, ISSN 2217‐8309, DOI: 10.18421/TEM94‐07, November 2020.

TEM Journal – Volume 9 / Number 4 / 2020. 1371

In terms of input data size, it is confirmed that
multithread has negative impact on data smaller than
100 characters during decryption and 1 000
characters during encryption. With a large number of
characters to encrypt, all results clearly show better
performance on multiple threads.

The optimal thread count, depending on the data
size that needs to be encrypted can be split into three
categories:

 Under 1 000 characters – multithreading will not
speed up the process significantly, using 1 thread
is optimal.

 Between 1 000 and 50 000 characters – the
effects of Intel’s Hyperthread technology do not
have effect on the results. Real cores provide
significant speed improvement, especially up to 3
threads.

 Above 50 000 characters – even Intel’s
Hyperthread technology impacts the performance
with a few percent.

The source code for all conducted tests and the
corresponding parts for RSA encryption and
decryption algorithms are specifically designed to be
easy to use and simple to port in new projects. The
code structure is simple and logical, so it is easy to
read and comprehend.

Along with the advancement of technologies, there
will always be new methods for faster, simpler and
easier execution of complex calculations, required by
the RSA algorithm. The described platform in this
research can be used as an initial base for any future
development in the field.

References

[1]. Sinyagina, N., Todorov, V., & Kalpachka, G. (2020).

Implementation of cryptographic algorithms via
multithreading. Bulgarian Chemical Communications,
(52)A, 220-224.

[2]. Stokes, J. (2002). Introduction to Multithreading.
Super-threading and Hyper threading Ars Technica.

[3]. Marr, D. T., Binns, F., Hill, D. L., Hinton, G.,
Koufaty, D. A., Miller, J. A., & Upton, M. (2002).
Hyper-Threading Technology Architecture and
Microarchitecture. Intel Technology Journal, 6(1).

[4]. Fadhil, H. M., & Younis, M. I. (2015). A
Multithreading Implementation of RSA Algorithm on
Multicore and GPU: Parallel Processing. LAP
LAMBERT Academic Publishing.

[5]. Casey, S. (2011). How to determine the effectiveness
of hyper-threading technology with an
application. Intel Technology Journal, 6(1), 11.

[6]. Fadhil, H. M., & Younis, M. I. (2014). Parallelizing
RSA algorithm on multicore CPU and
GPU. International Journal of Computer
Applications, 87(6).

[7]. Haili, H. K., & Basir, N. (2009). RSA Decryption
Techniques and the underlying Mathematical
concepts. International Journal of Cryptology
Research, Malaysia, 1(2), 165-177.

[8]. Nisha, S., & Farik, M. (2017). RSA Public Key
Cryptography Algorithm–A Review. International
journal of scientific & technology research, 6(7), 187-
191.

[9]. Hruska, J. (2012). Maximized performance:
comparing the effects of hyper-threading, software
updates. ExtremeTech.

[10]. Jonsson, J., & Kaliski, B. (2003). Public-key
cryptography standards (PKCS)# 1: RSA
cryptography specifications version 2.1 (pp. 1-68).
RFC 3447, February.

[11]. Moriarty, K., Kaliski, B., Jonsson, J., & Rusch, A.
(2016). PKCS #1: RSA cryptography specifications
version 2.2, RFC 8017, no. 10.

