
TEM Journal 4(3):297-300

Difference between T-SQL and the Relational
Model

Davor Lozić 1, Alen Šimec 1

1Tehničko veleučilište u Zagrebu, Vrbik 8, Zagreb, Croatia

Abstract - T-SQL, dialect of SQL, is a language used
for a relational database management system
(primarily Microsoft’s SQL Server), which in turn is
based on the relational model. Understanding some of
the key foundation principals can help in a better
understanding of the language.
This paper introduces basics of the relational model
and the difference between the relational model and
the actual T-SQL implementation.Several tightly
related topics like predicates, relations, and common
misconceptions about databases are also discussed.

Keywords – relational model, T-SQL, predicate,
relation

1 Introduction

The relational model is a mathematical model for
data management and manipulation which was
initially proposed by Edgar Codd in 1969 [1]. It’s
based on set theory and predicate logic (figure 1).

Figure 1 - T-SQL.

1.1 Set theory

George Cantor, the founder of set theory, defined a
set as follows:

By an "aggregate" we are to understand any
collection into a whole M of definite and separate
objects m of our intuition or our thought. These
objects are called the "elements" of M.

The German word for a set is Menge, which is the
reason Cantor denotes a set by M and its elements by
m. Menge is translated as an aggregate, but it has
since become common to use the word set instead
[2].

Fundamental concept to understand about sets is that
they are determined uniquely by its members [3].
That means that sets {5, 5, 7, 2} and {5, 7, 2} are
identical. Order of elements inside the set is not
important so the set {2, 5, 7} is the same as the
previous two.

1.2 Predicate logic

A predicate is a generalization of a propositional
variable [4]. In other words, a predicate is an
expression that, when attributed to some object,
makes a proposition either true or false [5]. For
example, when “has a car” predicate is evaluated
against employee, it’s a proposition. Predicates make
filtering and data integrity possible. They can be
even used for defining the data model itself.
Example: invoice with ID 1128 has been created on
2015-01-01 by the user with ID 201. In this example,
defining the data model is simple: invoiceID INT,
invoiceCreated DATE, userID INT.

2 Common misconceptions

A common mistake is to think that “relational” in
relational model has something to do with foreign
keys and relationships between tables. Relation is
what SQL calls a table but the two are not

TEM Journal – Volume 4 / Number 3 / 2015. 297
www.temjournal.com

TEM Journal 4(3):297-300

synonymous. Table is an engineering
approximation to the relational model.

A relation has a heading with a set of attributes and a
body with a set of tuples [6]. SQL attempts to
represent attributes with columns and a set of tuples
with rows. Attribute is identified with name and type
name and each tuple is defined with heading (which
corresponds to the heading of the relation) and values
with a respective types (Figure 2).

Figure 2 - Relational model

3 Differences

Main differences between T-SQL and relational
model will be shown in this chapter. Figure 3 shows
the data used for queries [7].

Figure 3 - Example data (Users)

Set has no duplicates but the T-SQL doesn’t enforce
this rule. Example:

SELECT City FROM Users;

Figure 4 shows the query result. As shown, SELECT
statement doesn’t enforce unique rows in result.

Figure 4 - Result does not contain unique rows

T-SQL implements keyword DISTINCT which
guarantees unique rows and returns relational result:

SELECT DISTINCT City FROM Users;

Figure 5 - Unique results returned by DISTINCT

Another non-relational concept which T-SQL allows
is having a column without defining a name. Often,
there is a need for defining the result based on the
expression:

SELECT Name + ‘‘ + City FROM Users;

This query creates attribute without the name but the
relational model doesn’t allow creation of attributes
without giving them a unique name inside the
relation. Attribute name uniqueness is another
problem. Consider having a simple join between two
tables where both tables have the attribute name. To
solve both problems, T-SQL implemented AS clause
which can assign the alias to the given target.[8] Next
query perfectly respects all relational model rules:

SELECT Name + ‘ ‘ + City
ASFullDescriptionFROM Users;

T-SQL’s implementation has another deviation from
the relational model. Its predicate logic only
implements TRUE, FALSE, and NULL but
according to Edgar Codd, there should be another
value. Example is when the user doesn’t want to
provide or when the user doesn’t have an email. Both
cases should have different value inside the relation.

For a query to be called relational, it needs to return a
relation after executed. Query with the ORDER BY
clause is not relational because the set theory clearly
states that the order in which the elements of a given
set are listed does not matter [2]. The next query
guarantees ordering by name and that is the reason
why the result of the query is not a relation:

SELECT Name FROM Users ORDER BY
NameDESC;

Figure 6 shows a result which guarantees the order of
rows.

298 TEM Journal – Volume 4 / Number 3 / 2015.
 www.temjournal.com

TEM Journal 4(3):297-300

Figure 6 - Example data (Users)

After executing a query, result also returns a list
attributes in a specified order. If the query contains
SELECT *, T-SQL guarantees the same order in the
result based on their order inside the table definition.
The true relation doesn’t care about the order of
attributes and that is another deviation from the
relational model.

In T-SQL, order of columns is defined and
significant but the relational model requires there to
be no significance to any ordering. It’s not even easy
to change the column order inside most of the SQL
implementations. In SQL Server, when a user
changes the column order, system recreates the table
from scratch. SQL Management Studio will not
allow such operation if the option “Prevent saving
changes that require table re-creation” is checked
(Figure 7).

Figure 7 – Prevent saving changes that require table re-
creation

To prevent T-SQL from recreating a whole table,
Views can be used. A view is a virtual table and it
doesn’t exist physically.It’sdata source is based on
the result of an SQL statement. Consider the data in
Figure 3. Requested column order is Id, City, Name,
instead of Id, Name, City.

CREATEVIEWUsersView
AS
SELECT Id, City, Name FROM Users;

Getting the data is same as previous examples:

SELECT * FROMUsersView;

Result is shown in Figure 8.

Figure 8 – Result after getting data from a View

4 Non-relational queries

This chapter will provide some of the non-relational
queries seen in this paper, grouped in one place
which could also be used as a reference for creating
relational queries.

this query doesn’t guarantee
uniqueness, use DISTINCT clause
SELECT City FROM Users;

withDISTINCT clause
SELECT DISTINCT City FROM Users;

no attribute name in this query
AS must be used, also this query
doesn’t guarantee uniqueness,
useDISTINCT clause
SELECT Name + ‘ ‘ + City FROM Users;

withDISTINCT and AS clause
SELECT Name + ‘ ‘ + CityASUniqueNameFROM
Users;

this query contains ORDER BY
in Set Theory, order is not
important, also this query
doesn’t guarantee uniqueness,
useDISTINCT clause
SELECT Name FROM Users ORDER BY Name
DESC;

TEM Journal – Volume 4 / Number 3 / 2015. 299
www.temjournal.com

TEM Journal 4(3):297-300

withDISCTINCT and without
ORDERBY clause
SELECT DISTINCT Name FROM Users;

5 Conclusion

Virtually all relational database management systems
are based on SQL which is derived from a relational
model. T-SQL and relational model is based on a
strong mathematical foundations and understanding
them can help in better understanding of the
language. T-SQL deviates in a lot of ways from a
relational model but almost all deviations could be
avoided with appropriate language constructs.

6 References

[1] E. F. Codd, Relational Completeness of Data
Base Sublanguages, IBM Research, 1972.

[2] G. Bezhanishvili and E. Landreth, An
Introduction to Elementary Set Theory.

[3] F. Stephan, Set Theory, 2009 - 2010.

[4] A. Aho and J. Ullman, Foundations of Computer
Science, 1992.

[5] I. Ben-Gan, D. Sarka and R. Talmage, Querying
Microsoft SQL Server 2012, 2012.

[6] T. L. Saito, Silk: A Scalable Data Format In-
Between Relations and Trees, Department of
Computational Biology University of Tokyo,
Japan.

[7] S. Misner and M. Ross, Introducing Microsoft
SQL Server 2014, Washington: Microsoft Press,
2014.

[8] G. Fritchey, SQL Server 2012 Query
Performance Tuning, New York: Apress, 2012.

300 TEM Journal – Volume 4 / Number 3 / 2015.
 www.temjournal.com

	Introduction
	Set theory
	Predicate logic

	Common misconceptions
	Differences
	Non-relational queries
	Conclusion
	References

