
TEM Journal 4(3):287-291

An Agent Based Software Approach towards
Building Complex Systems

Latika Kharb 1, Enes Sukic 2

1 Jagan Institute of Management Studies, Rohini, New Delhi, India
2 Faculty of Electronic Engineering, University of Nis, Nis 18000, Serbia

Abstract – Agent-oriented techniques represent an

exciting new means of analyzing, designing and
building complex software systems. They have the
potential to significantly improve current practice in
software engineering and to extend the range of
applications that can feasibly be tackled. Yet, to date,
there have been few serious attempts to cast agent
systems as a software engineering paradigm. This
paper seeks to rectify this omission. Specifically, points
to be argued include:firstly, the conceptual apparatus
of agent-oriented systems is well-suited to building
software solutions for complex systems and secondly,
agent-oriented approaches represent a genuine
advance over the current state of the art for
engineering complex systems. Following on from this
view, the major issues raised by adopting an agent-
oriented approach to software engineering are
highlighted and discussed in this paper.

Keywords – Agent systems, software engineering,

complex systems, software solutions.

1. Introduction

Over time, due to increased product functionalities,
softwareprojects have become more and more
complex and along withincreasing work completion
pressures, the software projects arerequired to be
accomplished in lesser amount of time but withfewer
people[1].Designing and building high quality
industry based software is a difficult task. Indeed, it
has been verified that the industrial development
projects are amongst the most complex construction
tasks undertaken by humans. To handle this level of
criticality, a wide range of software engineering
paradigms have been devised (e.g., procedural
programming, structured programming, declarative
programming, object-oriented programming, design
patterns, application frameworks and component-
ware).Each successive development either claims to
make the software development process easier or to
extend the complexity of applications that can
feasibly be built.But recently, with the high rate of
increase in complexity of projects associated with
software engineering, agent concepts have been
considered as a new paradigm for handling complex
systems.Agile methods are built on the assumption
that the world isunpredictable and therefore aims at
being adaptive, flexible and responsive, while

traditionalmethods aims at optimizing the
development through a well-planned and formalized
process[2].By adopting an agent-oriented approach to
software engineering means decomposing the
problem into multiple, interacting, autonomous
components (agents) that have particular objectives
to achieve.
Yet despite this, a number of fundamental questions
aboutthe nature and the use of the agent-oriented
approach remain unanswered [3].Using agents as the
basic building blocks to construct complicated
software systems was first suggested by Shoham in
1993 [4].However, Agent Technology originated
from artificial intelligence research and can be traced
back to the actor model by Hewitt [5]of 1970.

Fig 1: AOSE thematic map

Broadly speaking, an agent can be defined as:

• Agent is a business process of developing

software, equipped with distinct concepts and
modeling tools, in which the key abstraction used
in its concepts is that of an agent.

• An agent is an encapsulated computer system
that is situated in some environment, and that is
capable of flexible, autonomous action in that
environment in order to meet its design
objectives.

TEM Journal – Volume 4 / Number 3 / 2015. 287
www.temjournal.com

TEM Journal 4(3):287-291

 User Satisfaction = Compliant Product
 + Good Quality
 + Delivery within Schedule[6]

There are a number of points about this definition
that require further explanation. Agents are:
(i) clearly identifiable problem solving entities
having well-defined boundaries and interfaces;
(ii) designed to fulfil a specific role—they have
particular objectives to achieve;
(iii) autonomous—they have control both over their
internal state and over their own behaviour;
(iv) capable of exhibiting flexible problem solving
behaviour—they need to be reactive/
proactive.

Fig 2:Canonical View of Agent Based Systems

When adopting an agent-oriented view of the world,
it soon becomes apparent that a single agentis
insufficient. Most problems require or involve
multiple agents: to represent the decentralizednature
of the problem:having multiple perspectives.
Moreover, the agents will need to interact with one
another, either to achieve their individual objectives
or else to manage the dependencies that ensue from
being situated in a common environment.

2. The Agent-Oriented Software Terminology

The agent based systems represent a promising
approach for engineering complex systems. In
particular, we explore agent based systems in three
broad terms :

• Specification
• Implementation
• Verification

• Specification

In this, we consider all the problems ofspecifying an
agent system, their requirements for a framework
development etc.

• Implementation
The next issue we consider is:once specification is
done, we are now ready to implement a system i.e.
moving from specification to a computational
system.

• Verification
Once a concrete system is developed, we need to
check that if the system is correct with respect to our
original specification. This process is known as
verification.

3. Properties of Agent Based Systems

By an agent-based system, we mean a system that
has the following properties:

• Autonomy: agents work in autonomy i.e. they

encapsulate some state and make decisions about
what to do based on this state, without the direct
intervention of humans or others;

• Reactivity: agents are situated in an environment
and are able to perceive this environment to
respond in a timely fashion to the changes that
occur in it;

• Pro-activeness: agents do not simply act in
response to their environment, they exhibit goal-
directed behavior;

• Social ability: agents interact with other agents
via some kind of agent-communication
languagein order to achieve their goals.

Consider an example to understand the properties of
agent based systems in a better way.An agent based
automatic pilot aircraft system is designed to fulfill:

• Proactiveness:It’s the property to plan how to

safely land aircraft at an airport.
• Reactiveness:It’s the property to foresee unseen

circumstances and make system ready to react to
them.

• Social Ability:It’s the property that
depictscooperation between air craft controllers
and auto pilot system.

• Autonomy: All above mentioned properties
whencompleted successfully; lead to property of
autonomy.

288 TEM Journal – Volume 4 / Number 3 / 2015.
 www.temjournal.com

TEM Journal 4(3):287-291

4. Characteristics of complex systems

When we have to build complex systems, following
characteristics of complex systems need to be
enumerated [7]:
• Complexity is composed of inter-related
subsystems, which arehierarchical innature.
Moreover, these relationships are not static and they
often vary over time.
• The choice of which components in the system are
primitive is relatively arbitrary and is defined by the
engineer’s aims and objectives.
• Complex systems will evolve from simple systems
more rapidly if there are stable intermediate forms,
than if there are not.
• It is possible to distinguish between the interactions
among sub-systems and the interactions within sub-
systems. Moreover, although many of these
interactions can be predicted at design time, some
cannot.

5. Tackling complexity for Building Complex

Systems

The most compelling argument that can be made for
adopting an agent-oriented approach to software
development is to have a set of quantitative data that
showed the superiority of the agent-based approach
over a range of other techniques. However such data
does not exist. Hence arguments must be qualitative
in nature.Booch [8] identifies three tools for tackling
complexity in software:

• Decomposition: The most basic technique for
tackling large problems is to divide them into
smaller, more manageable parts which can be solved
easily in isolation and it helps to tackle complexity
because it limits the designer’s scopebecause only a
small portion of the problem needs to be solved at a
time.

• Abstraction: The process of defining a simplified
model of the system that emphasises some of the
details or properties, while suppressing others. This
technique is very effective as it limits the designer’s
attention, so that it can be focused on the salient
aspects of the problem instead of diverting towards
less relevant details.

• Organisation: The ability to specify organisational
relationships can help designers to tackle complexity
in two ways. Firstly, the individual components of a
sub-system can be treated as a single unit by the
parent system. Secondly, a number of components
may work together to provide a particular
functionality.

6. Strengths of Agent-oriented Methodologies
Agent-oriented methodologies strengths could be
considered in two different ways:

• Inclusion of other paradigms capabilities as

well as presentation of more abilities:
AOSE paradigm includes all the capabilities of other
existing paradigms and also possesses more
capabilitieslike – more features, more goal- oriented,
good service performers and many more.

• Suitability with new software development

requirements:
As mentioned before, due to the complexity of
software development process, wide range of
software engineering paradigms has been devised.
But recently, with the high rate of increase in
complexity of projects in software engineering, agent
basedconceptshave made advancements

7. Weakness of Agent-oriented Methodologies
Agent-oriented methodologies weaknesses could be
considered in three different ways:

• Lack of Agent-oriented programming

languages:
Although due to the complexity of software
development process, agent based concepts, have
achieved advancements.However, industry is
reluctant to adopt a new paradigm as it seems
impossible to implement these ideas in a
currently acceptable, commercially viable
programming language.

• Lack of knowledge about existence &
advantages of agent-orientation:
The benefits of agent technology must be
declared by introducing the cases where agent
based paradigm succeeds and other existing
paradigms fail.

• High cost of agent based system acquisition:
Being a new paradigm, it’s acquisition by
software development organizations requires a
high cost for training the development team.

8. Comparisons& Mapping amongst Agent,
Object and Component Based Systems

TEM Journal – Volume 4 / Number 3 / 2015. 289
www.temjournal.com

TEM Journal 4(3):287-291

In this section, we have highlighted the comparison
study of Object and Component based approaches
with Agent-Based approach with respect to some
characteristic features.

Table 1: Agents versus Objects and Components

Point of
Differences

Object-
based
Approaches

Component-
based
Approaches

Passive in nature

Yes

No

Do not encapsulate
behavior
activation

Yes

No

Require adequate
set of concepts/
mechanisms for
modeling of
system

Yes

No

Provide minimal
support for
structuring
collectives

Yes

No

Table 2: Comparing Object & Agent-based Approaches

Point of
Differences

Object-
based
Approaches

Agent-
based
Approaches

Passive in nature.

Yes

No

Do not encapsulate
behavior
activation

Yes

No

Fails to provide an
adequate set of
concepts /
mechanisms for
modeling complex
systems

Yes

No

Minimal support
for specifying/
managing
organizational
relationships

Yes

No

In the last few years, software development research
has focused on methods and approaches that work
towards developing soft-ware systems by integrating
already developed components [9]. Often, software
engineers use object-oriented programming to
implement agent systems. There exist similarities
between object oriented and agent oriented
paradigms. A technology that is closely related to
that of object-oriented systems is component-based
software [10]. There are a number of motivations for
component-based software, but arguably the single
most important feature of component systems is
software reuse.Everyday software development
projects develop all software components from
scratch. Researchers have now developed methods
that permit building software from pre-built
components.
Like components, agents are typically self-contained
computational entities, that do not need to be
deployed along with other components in order to
realise the services they provide. Also, agents are
often equipped with “metalevel reasoning” ability i.e.
they are able to respond to requests for information
about the services they provide. So, with respect to
agent-oriented approach; it is possible for proponents
of object-oriented systems/component oriented
systems, or any other programming paradigm to
claim that such mechanisms can be implemented
using agent based technique.

9. Conclusion

In this paper, we’ve described the basic
terminologyof agent based systems, their properties,
as well as their advantages and weaknesses. A
comparative analysis of existing paradigms (object
based and component based) with newer paradigm
(agent based) is also presented in this paper. As
we’ve discussed that a very little awareness is present
with respect to this paradigm; so our concern to
write this article is to generate a technical awareness
amongst researchers and industry people about its
existence. To briefly conclude here, we can write that
today agent based software approach for building
complex systems is at an initial stage. A lot of work
has to be done to make this engineering paradigm a
popular one, and make the industry and researchers
realize it’s worth and start development of complex
systems with agent based approach.The paper
concludes by setting out some issues and open
problems for future research through comparative
study.

290 TEM Journal – Volume 4 / Number 3 / 2015.
 www.temjournal.com

TEM Journal 4(3):287-291

References

[1] Dr. Latika Kharb, Proposing a Comprehensive
Software Metrics for Process Efficiency, International
Journal of Scientific & Engineering Research, Volume 5,
Issue 9, September-2014.

[2] T. Dybå and T. Dingsøyr, "Empirical studies of agile
software development: A systematic review," Information
and Software Technology, vol. 50, pp. 833-859, 2008.

[3] Nicholas R. Jennings, On agent-based software
engineering, Artificial Intelligence (Elsevier Science), pp
277–296, 2000.

[4] Shoham Y (1993).Agent-Oriented Programming, Artif.
Intell. 60(1):51-92.

[5] Hewitt, C. 1990, Toward open Information Systems
Semantics, Proceedings of 10th International Workshop on
Distributed Artificial Intelligence, Technical Report, ACT-
AI-355-90, MCC, Austin, Texas.

[6] Latika Kharb et al, Reliable Software Development
with Proposed Quality Oriented Software Testing Metrics,
Int. J. Comp. Tech. Appl., Vol 2(4), JULY-AUGUST
2011

[7] Simon, 1996]: H. A. Simon (1996) “The sciences of
the artificial” MIT Press.

[8] Booch [1994: G. Booch (1994) “Object-oriented
analysis and design with applications” Addison Wesley

[9] Latika Kharb et al, Complexity Metrics for
Component-Oriented Software Systems, ACM SIGSOFT
Software Engineering Notes, Volume 33 Number 2,
March 2008.

[10] C. A. Szyperski (1997) “Component software:
beyond object-oriented programming” Addison Wesley.

TEM Journal – Volume 4 / Number 3 / 2015. 291
www.temjournal.com

