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Abstract – The problem of axisymmetric hydroelastic 
deformation of a thin cylindrical shell containing a 
liquid under the action of a moving load is 
approximately solved. It is reduced to the equation of 
bending of the shell and the condition of 
incompressibility of the liquid in the cylinder. The 
deflections of the shell and the level of lowering of the 
liquid are unknown. For solution, the Galerkin method 
is used and the problem is reduced to a system of 
nonlinear algebraic equations. A simpler solution is 
considered without taking into account the 
incompressibility condition. Here, in addition to the 
deformed state of the shell, the critical speeds of the 
moving load are determined analytically. 
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1. Introduction

In liquid rockets, for the correct dosage of 
refuelable fuel components, it is necessary to take  
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into account the bending of the walls of the tanks and 
as a result of lowering the level of the free surface of 
the liquid there. During their operation, the action of 
the pressure wave distorts the preliminary deformed 
state of the walls of the tanks, which in turn affects 
the critical velocities of this wave. All of these facts 
lead to the need to solve the hydroelastic problem for 
a cylindrical shell, taking into account the 
incompressibility of the liquid and the action of the 
moving load [1], [2]. A feature of this hydroelastic 
problem is the influence of the deformed state of the 
tank walls on the hydrostatic load, which is 
determined in accordance with Pascal's law taking 
into account the incompressibility of the liquid. As a 
result of this, the deflections of the shell are already 
nonlinearly dependent on the load, in contrast to the 
usual problems of static strength of tanks. The 
following considering problem is further complicated 
by taking into account the influence of a pressure 
wave on the walls of the shell, considered as the 
action of a moving radial load moving at a constant 
speed along its lateral surface [3], [4]. Therefore, in 
order to solve the problem, in addition to using the 
shell equations under the action of hydrostatic 
pressure and moving load, it is also necessary to take 
into account the condition of incompressibility of the 
liquid, which introduces nonlinear effects into the 
solution. The neglect of this condition greatly 
simplifies the problem, transferring it from the 
hydroelastic area to the usual static problem of shell 
strength. In the proposed problem, in addition to 
studying the lowering of the liquid level, another 
important problem was solved: determination of the 
critical speed of the moving load, upon reaching 
which a loss of stability of the shell walls is possible, 
which threatens the destruction of the entire structure 
of the aircraft [5], [6]. From the point of view of 
practice, the minimum critical velocity is the most 
interesting issue, the expression for which in a closed 
form was obtained in this work. 
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2. Methodology 
 

The solution to the hydroelastic problem is based 
on a change in the level of the free surface of the 
liquid in the cylinder due to deformation of its walls. 
It should be noted here [7], [8]. For this, the 
resolving system of equations includes, in addition to 
the equation of axisymmetric bending of the cylinder 
under the influence of gyrostatic pressure and a 
movable radial load, also the condition of 
incompressibility of the liquid [9], [10]. Lowering 
the liquid level leads to a change in the hydrostatic 
load and, as a consequence, to the nonlinearity of the 
problem. Application of the Galerkin method reduces 
the problem to a nonlinear system of algebraic 
equations, the solution of which has purely 
computational difficulties [9], [10]. Therefore, a 
simpler version of the solution of the problem is 
proposed that does not take into account the 
incompressibility of the liquid. In this case, 
application of the Galerkin method reduces the 
problem already to a system of linear algebraic 
equations. In both variants of the solution, the 
problem of determining the critical speed of the load 
at which the loss of stability of the shell walls occurs, 
as well as the effect of the liquid on this speed, is 
investigated [11], [12]. 
 
3. Results 
 

We consider hydroelastic deformation of a thin 
cylindrical shell containing a liquid under the action 
of a pressure wave. We will represent this wave as an 
infinite uniformly distributed radial load moving 
along the side surface of the shell with a constant 
speed V. In Figure 1, for definiteness, a shell is 
shown freely supported on both ends with an 
absolutely hard bottom. We believe that in an 
undeformed state it is completely filled with a liquid 
with a specific gravity \gamma, and in the curved 
form of its walls, the height of the liquid column is 
equal to Н (Figure 1). 

 

 
 

Figure 1. Absolutely hard bottom cylindrical shell 
 

The cylinder is in an axisymmetric deformed state 
characterized by its normal displacements w. In 
addition to the hydrostatic pressure determined in 
accordance with Pascal’s law, a moving load of 
intensity q, which in turn consists of static and 
inertial components, also acts on the walls of the 
shell. We solve the problem in a quasistatic setting, 
according to which the deflections of the cylinder w 
depend only on the longitudinal coordinate х and do 
not depend on time t [13]. Then, assuming that over 
time t the load element passes the distance x = Vt, the 
total load on the shell from the action of the pressure 
wave will be the following: 
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where g is gravitational acceleration. The deformed 
state of the shell is described by the equation of its 
axisymmetric bending under the influence of 
hydrostatic and mobile loads: 
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where  
 

𝛽ସ ൌ 3ሺ1 െ 𝜇ଶሻ/𝑅ଶℎଶ, 𝐷 ൌ 𝐸ℎଷ/12ሺ1 െ 𝜇ଶሻ, R 
and h are the radius and the thickness of the shell, Е 
and 𝜇 are the elastic modulus and the Poisson's ratio 
of its material, respectively. The condition of 
incompressibility of the liquid in the shell has the 
following form [1]: 
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where 𝜃 is the circumferential coordinate. Given the 
axisymmetric deformation of the shell, relation (3) is 
simplified: 
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The value of L – H indicates the level of lowering 
of the free surface of the liquid in the cylinder. In the 
system of equations (2) and (4), the unknown are the 
deflection function of the shell w(x) and the new 
position of the liquid level after the deformation of 
H. To solve the problem, we use the Galerkin 
method, according to which we represent the 
deflection of the cylinder in the form of the following 
series: 

 

𝑤 ൌ ∑ 𝑤௜𝜙௜ሺ𝑥ሻ
ே
௜ୀଵ ,   (5) 

 

where 𝑤௜ are the unknown coefficients, )(xi  are 

the specified coordinate functions satisfying the 
boundary conditions at the ends of the shell. 
Applying the procedure of the Galerkin method to 
equation (2) and substituting series (5) in the relation 
(4), we obtain a system of nonlinear algebraic 
equations of the following form: 
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The coefficients 𝑏௜ we obtained from the 
coefficients 𝑏௝ by replacing the index j by i. 

Unknown constants iw  enter the system of equations 

(6) linearly, and the constant Н enter the system of 
equations nonlinearly. The latter circumstance 
sharply complicates the solution of the problem. In 
the case of free support of the ends of the shell 
(Figure 1.), taking in (5) 𝜙௜ ൌ 𝑠𝑖𝑛ሺ 𝑖𝜋𝑥/𝐿ሻ, the first 
member of the series makes the largest contribution 
to the deformed state of the cylinder [1]. Therefore, 
preserving only it from the incompressibility 
condition (4), we obtain the relation between 1w  and 
H in the following form: 
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This formula in its structure coincides with the 
formula obtained when solving a similar problem. 
However, in this particular case, we only reduce the 
dimension of the problem by one, and the 
computational complexity of the solution remains 
because the coefficient 1w  nonlinearly enters into the 
equations. 

The solution can be simplified if we neglect the 
decrease in the liquid level due to deformation of the 
cylinder walls. In this case, the incompressibility 
condition is satisfied identically since H = L. 
Therefore, in (7), the upper limit in the integral for 
the hydrostatic load will be L. As a result, the system 
of nonlinear algebraic equations (6) becomes the 
system of linear ones (8). 
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(j = 1,2,….N).  (8) 
 

The coefficients 𝑎௜௝ are determined by formulas 

(7), and only N constants 1w  are unknown. If the 
approximating functions in (5) are chosen 
orthogonal, then the coupled system of equations (8) 

decomposes into N separate equations, the typical 
solution of which has the following form: 
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The system of equations (6) and (8) includes the 

velocity of the load V as a parameter. Its critical 
values at which shell stability is lost from (6) can be 
determined by enumerating the values of V, tracking 
for some of them a sharp increase in deflections. It is 
identified with the loss of stability at certain (critical) 
values of speed. From equations (8), the critical 
velocities are found from the condition that the 
determinant of this system is equal to zero: 
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If the approximating functions in (5) 𝜙௜ሺ𝑥ሻ are 
chosen orthogonal, then the critical velocities can 
also be found in closed form, equating to zero the 
coefficient 𝑎௜௜ in formula (9): 

 

𝑉஼ோ
ଶ ൌ െ

௚஽ሺ׬ థ೔
಺ೇథ೔ௗ௫ାସఉర ׬ థ೔

మௗ௫ሻ
ಽ
బ

ಽ
బ

௤ ׬ థ೔
಺಺థ೔ௗ௫

ಽ
బభ

,   

(i=1,2,…..N).   (11) 
 

This speed is completely independent of the 
properties and volume of the liquid in the shell. Its 
minimum value corresponds to the simplest form of 
loss of stability determined by the 𝜙 ൌ 𝑠𝑖𝑛ሺ 𝜋𝑥/𝐿ሻ 
function. It is equal to: 
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Higher critical speeds will be realized with more 
complex forms of loss of stability determined by the 
𝜙௜ ൌ 𝑠𝑖𝑛ሺ 𝑖𝜋𝑥/𝐿ሻ functions for i = 2,3,…N. 

If it is necessary to determine the natural 
frequencies of the system, we consider the limiting 
case H=L, while we assume the problem to be 
nonstationary. In this case, the full second derivative 
symbolizing the normal movement of the shell and 
the acceleration of the shell walls in the direction 
normal to its surface will have the form: 
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As a rule, the second term in this expression is 
neglected, which greatly simplifies the task as it is 
the Coriolis acceleration, then the equation of motion 
of the problem instead of (2) will be (12): 

 
డర௪

డ௫ర
൅ 4𝛽ସ𝑤 ൅

௤

௚஽
ሺ𝑉ଶ

డమ௪

డ௫మ
൅

డమ௪

డ௧మ
ሻ ൌ െ

ఊ

஽
ሺ𝐻 െ 𝑥ሻ ൅ 𝑞.   (12) 

 



TEM Journal. Volume 10, Issue 2, Pages 815‐819, ISSN 2217‐8309, DOI: 10.18421/TEM102‐39, May 2021. 

818                                                                                                              TEM Journal – Volume 10 / Number 2 / 2021. 

To solve this problem, we use Galerkin method. 
For this, the deflection of the shell is represented as 
follows: 
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where   is the vibration frequency, iw  are the 

unknown coefficients, 𝜙௜ሺ𝑥ሻ are the specified 
coordinate functions that satisfy the boundary 
conditions at the ends of the shell. Galerkin method 
procedure leads to equation (12). In matrix form, the 
resulting system of linear algebraic equations for the 

unknown coefficients iw will have the following 

form: 
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where K and М are square matrices of stiffness and 
masses of the shell, respectively, with dimensions 
𝑁 ൈ 𝑁, Y is the column of unknown coefficients in 
expansion (13) and В is the column of the right-hand 
sides associated with the hydrostatic load on the 
shell. The elements of these matrices and columns 
are of the following form: 
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Next, it is necessary to determine the natural 

frequencies of the shell vibrations 𝜔. For this, it is 
necessary to solve the system of equations (14): 
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Equation (17) makes it possible to determine the 
lower part of the spectrum of natural frequencies in a 
one-term approximation. From here we get the 
following: 
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Using the dynamic criterion of stability, the critical 
velocity can be found from the condition that the 
natural frequencies of oscillations are equal to zero. 
Then putting 𝑘ଵଵ ൌ 0 we get the following: 
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4. Conclusions 
 

As the obtained solutions show, taking into 
account the liquid incompressibility nonlinearly 
affects both the critical speeds of the moving load 
and the lowering of the liquid level in the shell. The 
proposed solution is based on reducing the 
hydroelastic problem for the shell under the influence 
of hydrostatic pressure and a moving load to a joint 
system of one differential and one integral equation 
for the deflection of the walls of the shell and 
lowering the liquid level in it, which contains the 
velocity of the moving forces as a parameter. 
Moreover, the integral condition of the 
incompressibility of the liquid subsequently 
introduces nonlinear effects into the solution. The use 
of the Galerkin method for solving the initial 
relations nevertheless leads to a system of nonlinear, 
but already algebraic equations for the deflections of 
the shell. It is possible to get rid of nonlinear 
dependences only by neglecting the hypothesis of 
incompressibility of a liquid. But in this case, the 
hydrostatic and dynamic parts of one task break up. 
The action of a moving load does not affect the 
lowering of the liquid level, although it allows 
obtaining formulas for the spectrum of critical 
velocities. Moreover, for the most important lower 
critical velocity, this formula is obtained in a closed 
form. On the other hand, the solution of the -
hydrostatic problem does not affect the determination 
of critical velocities, and, consequently, the loss of 
stability of the shell, which now depends only on its 
stiffness properties. From this there is the conclusion 
that the division of one complex task into two 
relatively simple ones leads to incorrect results. 
Therefore, to obtain a reliable solution, the proposed 
method for studying the problem seems to be the 
most optimal one. 
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