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Abstract – Faults are unwanted events in any 
industrial production system. Early detection and 
diagnosis of faults in automated systems is important 
in order to prevent equipment damage, loss of 
performance and profits. For this purpose, more and 
more sophisticated and complex systems for 
observation and monitoring of basic characteristics in 
automated processes are being built. Preconditions for 
increasing their efficiency are processing and analysis 
of process information is obtained through a significant 
number of sensors. For pneumatic systems in addition 
to the identification of certain faults that may affect the 
normal production process, it is important to consider 
the possibilities to improve their energy efficiency. In 
this regards, the work focuses on the detection of leaks. 
The fault detection is based on the measurement of the 
compressed air consumption at the inlet of the 
pneumatic module and synchronization with signal 
from the PLC to the valve, and controlled the 
pneumatic cylinder. 

The experimental study aims to develop methods for 
automatic detection and classification of leaks that may 
be used in machine learning algorithms. 
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1. Introduction

Increasing of energy costs, efficiency requirements 
and awareness of climate change make energy 
efficiency a major challenge for industrial production 
systems. 

For handling systems, pneumatic automation is an 
alternative to the traditionally limited electric motor 
and hydraulic technologies in most automated 
industries. Compared to electric motors and 
hydraulic, pneumatics is usually clean, reliable and 
easy to integrate. In addition, the pneumatic system 
can offer a high power/weight ratio and has great 
advantages in terms of initial investment of 10:1 over 
alternative technologies [2],[10].  

According to various studies and studies 
worldwide, the percentage of electricity in the 
industrial sector used to produce compressed air 
varies between 5% in Japan, 10% to 15% in Australia 
and the EU, up to 30% in USA [1], and between 10% 
and 40% in China [7]. In some industries such as 
glass production and productions with a high degree 
of automation, this percentage reaches 45-50%. 

Compressed air is known to be the most expensive 
energy media available in production facilities. Both, 
production companies and machine builders, are 
often surprised to learn that the average price of 
compressed air in the European Union is around 0,02 
euro per 1m3. 

Losses of compressed air  are usually considered 
harmless and they  are often underestimated as a 
waste of energy and resources. However, leaks, as 
the main source of losses, also impair the 
performance of the machine, as they change the main 
parameters of the drive mechanisms - power and 
speed during operation. The presence of leaks forces 
the compressor to operate at a higher load, producing 
more compressed air to compensate  them.  

In existing installations, leaks are the main cause 
of excessive compressed air consumption, sometimes 
over 50% of the compressed air produced [6]. 
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In this context, the monitoring and diagnostics of 
the relevant parameters in compressed air systems 
has a high priority. More and more manufacturers of 
pneumatic elements and systems are focusing on 
product development aimed at optimizing and 
reducing compressed air consumption, reducing 
direct leakage losses, monitoring and managing 
compressed air consumption. 

An example of this is the energy efficiency module 
developed by the Japanese corporation SMC, which 
limits the direct losses from static leaks in machines 
[14]. The module on Figure 1 can be mounted to a 
compressed air supply line of any pneumatic system. 

 

 

Figure 1.  SMC Energy saving module 
 

The operation of the proposed solution is based on 
continuous measurement of the intake air flow. 
Based on these measurements, three levels of 
compressed air pressure are maintained: “normal”- 
when the system consumption is significant; “low 
pressure”- at reduced consumption, for short 
intervals ( when the machine is in standby mode, 
waiting for charging or unloading) and “topping the 
supply of air to the machine” - during a long time of 
low consumption (end of the working cycle, 
prolonged stay for rest or change of operators). Such 
a solution, which is based on flow thresholds, could 
be improved by using an intelligent classifier that, 
based on flow data, classifies current system states 
that deviate from normal. In the event of a deviation 
from the norm, appropriate measures could be taken, 
such as notifying the machine operator or generating 
an alarm in the automated monitoring and control 
system. 

A standard approach to developing a diagnostic 
algorithm is to create a model of the system behavior 
- for example through simulation or mathematical 
models. Mathematical modeling, in this case, is 
limited, especially in complex pneumatic systems, 
because it  requires the creation of models of a large 
number of pneumatic components and takes in to 
account all relations in between. 

Another possibility is the installation of multiple 
flow and pressure sensors along the pneumatic 
system. The collected time series data in combination 
with discrete signals from actuator autoswitches and 
PLC signals can be used for development of 
diagnostic algorithm. 

In order to reduce measuring instruments, an 
approach of installing compressed air flow meters at 
the inlet of each machine and continuously 
monitoring of their readings is often used. In this 
way, the presence of leaks can be easily identified in 
the event of abnormally high consumption of the 
respective machine. However, identifying leak points 
is a time consuming task and involves relatively long 
machine downtimes. 

The aim of this paper is to investigate the 
possibility of detecting and diagnosing leaks in 
different parts or components of the pneumatic 
system, based on processing and obtaining additional 
information from time series diagrams generated by 
flow sensor at the supply inlet and expanding the 
algorithm with data from  available in the system 
sensors and discrete signals. 
 
2. Theoretical Part 

 

The use of time series diagrams, taking into 
account operating pressure and airflow, is a standard 
practice in the design and operation of pneumatic 
systems. The consumption time profile allows to 
analyze the quantitative consumption and 
compressed air demands in the installation over the 
time and to optimize the operation of the 
compressors, especially in the presence of large 
variations and periods with partial load. In most 
cases, this is done by measuring the inlet of the main 
compressed air highway over a wide time scale (eg. 
24 hours) 

In the present task a flow meter is used at the 
compress air supply inlet of the local production cell. 
The time diagrams characterize the consumption of 
each cycle of the process. In this way, the task of 
diagnosing and detecting leaks can be reduced to a 
task of analyzing time series (Figure 2). 

 
 

Figure 2.  Flow and pressure time series 
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The time series similarity analyzing methods can 
be divided in three categories: direct, using original 
time series data; indirect with transformations 
(Fourier or wavelets transform, etc.); indirect, with 
metrics obtained from the original data (statistical 
moments, distances and others). 

The direct use of primary information is 
appropriate in the case of small series (short 
processes or low-resolution timing diagrams). The 
use of additional transformations usually requires 
specialized software products.  

This paper investigates the possibility of usage of 
metric characteristics in research of time series 
similarity. These metrics are widely used also for 
pattern recognition (prototypes comparison).  More 
than 15 metrics which define the respective feature 
space are already  known in literature. Majority of 
them are derivatives of classical distance metrics 
such as Euclidean Distance, Manhattan Distance, 
Mahalanobis Distance, etc. and improving their 
deficiency in particular cases. In this experimental 
study, limited numbers of such metrics are used.  

 
2.1. Feature Fusion Based on Distance in Metric 

Space 
 
2.1.1. Minkowski Distance 

 
Minkowski Distance - DMink  [5]  is one of the most 

commonly used in clustering and classification tasks 
metric. Minkowski Distance between two time series 

( )tf p  and ( )tf q  is defined by equation [3]: 
 

𝐷𝑀𝑖𝑛𝑘 = �∑ �𝑓𝑡
𝑝 − 𝑓𝑡

𝑞�𝑟𝑁
𝑡=1 �

1
𝑟, 

 

where: p
tf  and q

tf  are the values of time series pf  
and qf  at the moment t;  

N – number of records in the time series;   
r -  is integer number.  
In most applications only values r=2 (Euclidean 

Distance), r=1 (Manhattan, or City-block Distance) 
and r→∞ (Chebyshev, or Maximum Distance) have 
been considered [3].  

The main advantage of Minkowski Distances is 
that they are easy to calculate and interpret. In 
addition, standardized Minkowski Distances have 
been calculated [8], which take into account the 
number of samples. This allows time series with 
different lengths and missing values to be compared. 
For example, a calculated value of DEucl, based on 
only the real observations (N') in time series with 
missing data and subsequently dividing DEucl by N'. 

One of the most important limitations of 
Minkowski Distances is that they do not take into 
account the nonstationarity of deviations or time 
cross-correlations in the data set [9]. As a result, the 
observations with the largest deviation (if not 
standardized) will dominate. 

2.1.2. Canberra Distance 
 

Canberra Distance (DCanb) – examines the sum of 
series of a fraction differences between coordinates 
of a pair of objects. 

 

DCanb = ∑ �𝑓𝑡
𝑝−𝑓𝑡

𝑞�
�𝑓𝑡
𝑝�+�𝑓𝑡

𝑝�
𝑁
𝑡=1 . 
 

For close values in the series, the sums in the sum 
have minimal values.  

DCamb normalizes the scale of the deviations in the 
time series. This feature makes it suitable for a large 
span of values, which characterizes the flow 
diagrams of pneumatic systems with discrete-event 
action.  

The distance is sensitive to a small change when 
both are coordinated close to zero [4]. 

 
2.2. Correlations 

 
2.2.1. Pearson’s cross correlation 

 
The most know correlation measure is Pearson 

cross correlation coefficient  
(DPears) [11], which defined the degree of linear 

relationships between two time series: 
 

𝐷Pears = ∑ ��𝑓𝑡
𝑝−𝑓̅𝑝�∗�𝑓𝑡−𝑠

𝑞 −𝑓̅𝑞��𝑁−1
𝑡=0

�∑ �𝑓𝑡
𝑝−𝑓̅𝑝�

2𝑁−1
𝑡=0 ∗�∑ �𝑓𝑡−𝑠

𝑞 −𝑓̅𝑞�
2𝑁−1

𝑡=0

, 

 

where: p
tf  and q

tf  are the values of time series pf  
and qf  at the moment t;  

N – number of records in the time series;  
s – is the time lag between both series. 
In case of s=0, the similarity between time series is 

assessed without taking into account the time lag.  
As DPears is a measure of the linear relationship 

between time series and does not estimate the 
difference in time series values, amplitude scaling or 
translation does not affect the result. It does not take 
into account nonlinear dependences between the 
compared vectors. 

 
2.2.2. Angular Separation correlation coefficient (Das).  

 
It represents cosine angle between two vectors. 
 

𝐷𝑎𝑠 =
∑ 𝑓𝑡

𝑝𝑁
𝑡=1 .𝑓𝑡

𝑞

�∑ 𝑓𝑡
𝑝2𝑁

𝑡=1 .∑ 𝑓𝑡
𝑞2𝑁

𝑡=1 �
1
2
 

 

Das takes into account the degree of similarity of 
the profiles. Higher values of the angular separation 
coefficient indicate that the two objects are similar. 
The value of the angular similarity coefficient is [-1, 
1]. 
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3. Experimental Part 
 

For the purposes of the experimental study, a 
model of a basic pneumatic module was used (Figure 
3), and realized with conventional technical 
elements.  

The used pneumatic elements are listed in Table 1. 
  

 

Figure 3.  Experimental setup 
 

Table 1.  Equipment specification 
 

N Part Name SMC Product Code Q'ty 
1 Air tank 10l, max. 2,0 MPa, VBAT10AF-SV-Q 1 
2 Digital Flow Switch without Monitor, 0.2 - 10 l/min, PFM710-C6-F-N 1 
3 2 port finger valve, Push-in Dm6-Push-in Dm6 VHK2-06F-06F 1 
4 Air Filter, port size G1/8, max. operating pressure 1.0MPa, AF20-F01-A 1 
5 Precision regulator, port size G1/8, range 0.01-0.8 MPa, IR1020-F01 1 
6 Digital pressure switch with display, ISE10-01-B-G 1 
7 5/2 single solenoid valve 24V DC, push-in dia4, SY3120-5LOU-C4-Q 1 
8 One touch fitting, 2xpush-in dia4, KGT04-06 1 
9 Round cylinder ISO 6432, double acting, dia20, stroke125 CD85N20-125-A 1 
10 Meter-out speed controller/check valve horizontal, AS2201FG-01-04SA 1 
11 Meter-out speed controller/check valve horizontal, AS2201FG-01-04SA 1 
12 Polyurethane tube dia4/2.5 TU0425BU-1 0,50 
13 Polyurethane tube dia4/2.5 TU0425BU-1 0,30 
14 Polyurethane tube dia4/2.5 TU0425BU-1 0,30 
15 Auto Switch, LED 24 VDC, 0.5m lead wire D-P5DW 1 
16 Auto Switch, LED 24 VDC, 0.5m lead wire D-P5DW 1 
17 Silencer compact type, thread R1/8, synthetic material, AN10-01 1 
18 Silencer compact type, thread R1/8, synthetic material, AN10-01 1 

 
The experiment included 200 measurements of 

operating cycles:   50 measurements in the reference 
configuration (without leaks) and 50 measurements 
for three different situations of simulated leaks. 
Leaks are divided into two main categories: 

 

 Static leaks: leaks, with high consumption, as 
they are either in the main lines or at the machine 
level in standby mode. In the first case, the losses 
are permanent. In the other - during the period of 
stay of the machine and when the actuator is in 
the initial position; 

 Dynamic leaks, which are observed in the 
actuators (or more precisely in the system valve-
fittings-tubes-speed regulator-actuator). When 
the system is in the initial state (for example, the 
cylinder has a retracted rod) these leaks are not 
observed. After switching the system (the 
cylinder has the rod extended) a leak appears. 
They are usually leaks caused by from broken 
actuator or manifold seals, but is often from a 
defective fitting or connection that is under 
pressure only in this position of the system. 

 

On the test bench, the following three 
configurations are implemented (Figure 3): 

 Node A: static leak at the supply part of the 
system - before the directional control valve, 
including the supply port of the valve; 

 Node B: static leak at the actuator part - 
between the directional control valve and the 
cylinder, including leaks in the valve and leaks in 
the front seal of the cylinder;  

 Node C: dynamic leak – between the directional 
control valve and the cylinder in the line of 
forward move, including leaks in the valve when 
it is switch in this condition. 

 

The operating cycle data includes the status of the 
actuator end position autoswitches, the valve 
switching signal and the airflow values for the entire 
system. The sampling frequency is 10Hz (every 
100msec). Each cycle starts with a 500msec pause 
(initial state of the system). After reaching the 
cylinder in the end position (at signal from the 
sensor) there is again a 500msec pause and return to 
the initial position. 

The flow measurement at the inlet of the system is 
performed by means of a flow meter, in which the 
compressed air is forced to pass through the test 



TEM Journal. Volume 10, Issue 1, Pages 183-191, ISSN 2217-8309, DOI: 10.18421/TEM101-23, February 2021. 

TEM Journal – Volume 10 / Number 1 / 2021.                 187 

compartment of the flow meter in order to ensure a 
laminar flow. This limits (changes) the flow 
characteristics, but since this change is the same for 
all measurements, it can be ignored. The flow meter - 
(PFM710, SMC) measures the mass of air passed in 
units of SLPM ("standard liter per minute"), a 
normalized value corresponding to the temperature 
0°C, atmospheric pressure 1013mbar and 
atmospheric density 1.294 kg=m3 [12].  

For convenience, the inlet pressure of the system is 
fixed (5 bar) by means of a precise pressure regulator 
and sufficiently large tank is implemented. All leaks 
in the system are set to 1l/min. 

4. Results and Analyzes

Visual analysis of time series charts in normal 
mode shows: 

 The presence of stationary and random variations
in the values of the supply pressure. In this case,
the inlet pressure of the system is fixed by means
of a mechanical precise pressure regulator with
flow compensation. Stationary variations are the
result of pressure drops in the supply line;

 Variations in the lengths of time series with a
random character. They are equivalent to the
speed of the process.

 Local variations are possible in certain segments
of the process as a result of backlash, friction,
etc.

Pre-processing of the data includes 
synchronization of the time series using the sensors 
and/or signals to the valve of the controlled cylinder. 
This is due to the inertia of the pneumatic systems, 
the different degree of air compressibility, as well as 
due to the fact that in the presence of leaks in any 
part of the system, the time for extending or 
retracting the cylinder rod is extended and this delay 
accumulates over time [15]. 

Figure 4 shows the averaged and synchronized 
time series of measurements of one cycle in each 
configuration.  

Figure 4.  Average flow in one cycle for all configurations 

For the compiled sample of experimental data, a 
quantitative analysis of the observed values with 
respect to the mean values of the time series of 
normal (no leakage) operation in different feature 
spaces was performed. 

− Pearson cross-correlation coefficient - DPears 

Figure 5 presents the results of the DPears 
calculation and normal distribution in all cases.  

a) 

Figure 5.  Pearson cross-correlation calculation and 
normal distribution in all cases 

In case of static leak in the supply part of the 
system DPears have values > 0,96 which are close to 
the values in case of no leakages. The leakages in 
actuating part (after the directional control valve) 
decrease the value of DPears. Increasing the value of 
the leakage decreases the value of the DPears.  
− Angular Separation correlation coefficient (Das) 

Figure 6 presents the results of the Das calculation 
and normal distribution in all cases. Das decreases in 
all three cases of leakage, which makes this metric 
suitable for detecting problems in the pneumatic 
system, but without being able to locate it. 
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Figure 6.  Angular Separation calculation and normal 
distribution in all cases 

− Minkowski Distance 

Two Minkowski Distances were used – Manhattan 
(Figure 7) and Euclidean Distance (Figure 8). As the 
power of r increases, the values from the different 
calculations converge and become indistinguishable. 

Figure 7.  Manhattan Distance calculation and normal 
distribution in all cases 

In this case the metrics are sensitive to the 
increasing of the amplitudes of the observed time 
series, i.e. if the size of the leaks increases, the 
distances will increase. 

Figure 8.  Euclidean Distance calculation and normal 
distribution in all cases 

The distribution functions of the four classes of 
situations (Figure 7, Figure 8) show the possibility of 
their separation with the probability of errors in the 
classification of static and dynamic leakage after the 
valve. 

− Canberra Distance (DCanb) 

The results of the calculations and the normal 
distribution are presented in Figure 9. 

The results show that the Canberra Distance 
clearly distinguishes leaks from the normal state and 
from each other, which makes this metric suitable for 
detecting and locating single leaks with a 
deterministic (threshold) separation function. 

TEM Journal – Volume 10 / Number 1 / 2021.             
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Figure 9.  Canberra Distance calculation and normal 
distribution in all cases 

− Classification of two features 

The correlation coefficients applied above do not 
allow accurate classification of the leakages. 
Pearson's correlation does not provide information in 
the event of a static power leakage, and the angular 
separation coefficient, although giving a very clear 
idea of the problem, is not sufficient to determine 
whether the leakage is before or after the directional 
control valve. 

The methods related to distance calculation have 
the main disadvantage that, although to varying 
degrees, they are influenced by the amplitude of the 
observed signal, i.e. by the size of the leak, which 
makes it impossible to accurately classify the type 
and location of the leak. This is most pronounced in 
the Minkowski Distances, where a dynamic leakage 
of 2l/min and a static leakage of 1l/min give similar 
results. At the Canbera Distance, this dependence is 
not so strong, but it still exists and this makes it 
impossible to distinguish a large leakage after the 
valve from a small leakage at the input. 

With regards to above disadvantages, a variant of 
using two features for classification- Pearson 
correlation and Canbera Distance is proposed. Figure 
10 shows the distribution of values in the space of 
these two features. Accordingly, the possible changes 
of the values are marked when the size of the leak 
changes. The results obtained show a clear 
separability as: 

 Dcc<0,96, the leak is after the valve.;
 Dcc=>0,96 and Ca>5 the leak is on the supply

line;
 Dcc=>0,96 and Ca<=5 there is no leak in the

system.

Figure 10.  Two features classification 

5. Consistent Approach in Examining the
"Leakage/Measured Inlet Flow" Relationship

The operating cycle of the studied circuit can be 
divided into several steps, depending on the 
condition of the end position sensors, cylinder 
motion sensor, valve switching signal, valve position 
sensor, etc. depending on how many and what 
sensors are located in the system 

Figure 11.  Dividing the operational cycle regarding the 
status of the end position autoswitch 

A switching signal of a 5/2 single valve SY3120-
5LOU was used to divide the cycle into steps (Figure 
11). The data is time synchronized, taking into 
account the response time of the valve (20ms in 5bar) 
[13]. 

− Using an indexed time series (logistic table) 

When one is detecting and diagnosing faults, it is 
convenient to form a logistic table consisting of 
given features of the parameters or processes to be 
diagnosed. The choice of features depends on the 
process and knowledge of the system based on the 
information collected. 
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In the case of pneumatic systems, this information 
could be collected from end switch sensors, flow 
meters, pressure sensors, valve switching signals, 
valve status sensors, etc. used in the system. 

Suitable for the studied experimental model is the 
use of the readings of the flow meter at the input of 
the system and the switching signal of the directional 
control valve SY3120, taking into account the 
reaction time the valve for synchronization. 

In Table 2 shows the dependence of the flow of 
compressed air on the three classes of leaks. The 
designation "0" corresponds to no influence, and "1" 
- increases the air consumption. 

Table 2.  The dependence of the flow of compressed air on 
the three classes of leaks 

 Flow 
Leakege 

Flow 
Step 1 

Flow 
Step 2 

No leakages 0 0 
Static at supply line 1 1 
Static after the valve 0 1 
Dynamic after the valve 1 0 

− Canbera Distance 

Canbera Distance for each step is defined in below 
equations: 

− For Step 1 

𝐷𝐶𝑎𝑛𝑏𝑆1 = ��
�𝑓𝑡

𝑝 − 𝑓𝑡
𝑞�

�𝑓𝑡
𝑝�+ �𝑓𝑡

𝑝�
∗ 𝑑𝑡�

𝑁

𝑡=1

 

− For Step 2 

𝐷𝐶𝑎𝑛𝑏𝑆2 = ��
�𝑓𝑡

𝑝 − 𝑓𝑡
𝑞�

�𝑓𝑡
𝑝� + �𝑓𝑡

𝑝�
∗ (1 − 𝑑𝑡)�

𝑁

𝑡=1

, 

where: 𝑑𝑡 = [0,1] is the state of the signal from PLC 
that switch the valve. 

− Results 

Dividing the duty cycle into sub cycles (steps) 
allows, applying only one metric to determine the 
location of the leak. This method eliminates the 
influence of leakage size. 

The distribution functions of the calculated 
Canbera Distances for the three leakage classes and 
the non-leakage measurements are shown at Figure 
12. 

a) 

b) 

Figure 12.  Canberra Distance normal distribution a) for 
Step 1, b) for Step 2 

6. Conclusion

 In modern automated systems, direct monitoring 
and rapid diagnostics are essential not only to limit 
unpredictable downtime, but also to optimize energy 
costs and reduce losses. 

This paper discusses various possibilities for fault 
diagnosis (single leaks) in a basic and widely used in 
automation pneumatic system. Focusing on the 
prospects for building automatic diagnostic systems, 
the work is related to the initial stages of synthesis of 
image recognition algorithms.  

To determine the characteristics of the system, one 
sensor was used to measure the flow rate and one 
signal from the PLC that implements the control of 
the circuit. 

Based on experimental data, we presented 
estimates for the dividing classification relevance of 
classical metric distance. 

The obtained results show the possibility of 
detecting leaks in two categories - on the supply line 
and after the distributor, by means of two features. 

 A concept for the use of a logistics table by two 
characteristics is also presented, with the help of 
which it is possible to classify each category of leaks, 
regardless their size. 

The proposed methodologies and the obtained 
results are a prerequisite for their development for 
more complex industrial equipment including 
pneumatic systems. 
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